Skip to main content
Log in

Metal oxide nanoparticles in electrochemical sensing and biosensing: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with (318) refs) describes progress made in the design and synthesis of morphologically different metal oxide nanoparticles made from iron, manganese, titanium, copper, zinc, zirconium, cobalt, nickel, tungsten, silver, and vanadium. It also covers respective composites and their function and application in the field of electrochemical and photoelectrochemical sensing of chemical and biochemical species. The proper incorporation of chemical functionalities into these nanomaterials warrants effective detection of target molecules including DNA hybridization and sensing of DNA or the formation of antigen/antibody complexes. Significant data are summarized in tables. The review concludes with a discussion or current challenge and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rahman MM, Ahammad AJS, Jin J-H et al (2010) A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10:4855–4886. https://doi.org/10.3390/s100504855

    Article  CAS  PubMed  Google Scholar 

  2. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44. https://doi.org/10.1002/elan.200302930

    Article  CAS  Google Scholar 

  3. Wei Y, Li Y, Zhang N et al (2010) Ultrasound-radiated synthesis of PAMAM-Au nanocomposites and its application on glucose biosensor. Ultrason Sonochem 17:17–20. https://doi.org/10.1016/j.ultsonch.2009.06.017

    Article  CAS  PubMed  Google Scholar 

  4. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326. https://doi.org/10.1002/elan.200503415

    Article  CAS  Google Scholar 

  5. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22. https://doi.org/10.1007/s00604-009-0136-4

    Article  CAS  Google Scholar 

  6. Li N, Patrissi CJ, Che G, Martin CR (2000) Rate capabilities of nanostructured LiM2nO4 electrodes in aqueous electrolyte. J Electrochem Soc 147:2044–2049. https://doi.org/10.1149/1.1393483

    Article  CAS  Google Scholar 

  7. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270. https://doi.org/10.1021/nl0725906

    Article  CAS  PubMed  Google Scholar 

  8. Yantasee W, Hongsirikarn K, Warner CL et al (2008) Direct detection of Pb in urine and Cd, Pb, Cu, and Ag in natural waters using electrochemical sensors immobilized with DMSA functionalized magnetic nanoparticles. Analyst 133:348–355. https://doi.org/10.1039/b711199a

    Article  CAS  PubMed  Google Scholar 

  9. Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536. https://doi.org/10.1016/j.talanta.2016.07.034

    Article  CAS  PubMed  Google Scholar 

  10. Chauhan N, Pundir CS (2011) An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal Chim Acta 701:66–74. https://doi.org/10.1016/j.aca.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  11. Absalan G, Akhond M, Bananejad A, Ershadifar H (2015) Highly sensitive determination of nitrite using a carbon ionic liquid electrode modified with Fe3O4 magnetic nanoparticle. J Iran Chem Soc 12:1293–1301. https://doi.org/10.1007/s13738-015-0594-z

    Article  CAS  Google Scholar 

  12. Radhakrishnan S, Krishnamoorthy K, Sekar C et al (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl Catal B Environ 148–149:22–28. https://doi.org/10.1016/j.apcatb.2013.10.044

    Article  CAS  Google Scholar 

  13. Li BQ, Nie F, Sheng QL, Bin ZJ (2015) An electrochemical sensor for sensitive determination of nitrites based on Ag-Fe3O4-graphene oxide magnetic nanocomposites. Chem Pap 69:911–920. https://doi.org/10.1515/chempap-2015-0099

    Article  CAS  Google Scholar 

  14. Teymourian H, Salimi A, Khezrian S (2013) Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron 49:1–8. https://doi.org/10.1016/j.bios.2013.04.034

    Article  CAS  PubMed  Google Scholar 

  15. Bonyani M, Mirzaei A, Leonardi SG et al (2015) Electrochemical properties of Ag@iron oxide nanocomposite for application as nitrate sensor. Electroanalysis 27:2654–2662. https://doi.org/10.1002/elan.201500240

    Article  CAS  Google Scholar 

  16. Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313. https://doi.org/10.1016/j.electacta.2015.10.174

    Article  CAS  Google Scholar 

  17. Yuan M, Li J, Yu Y et al (2016) Fabrication of a Fe2O3 nanoparticles implantation-modified electrode and its applications in electrochemical sensing. Electroanalysis 28:954–961. https://doi.org/10.1002/elan.201500585

    Article  CAS  Google Scholar 

  18. Kaushik A, Solanki PR, Ansari AA et al (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B Chem 138:572–580. https://doi.org/10.1016/j.snb.2009.02.005

    Article  CAS  Google Scholar 

  19. Sousa CP, de Oliveira RC, Freire TM et al (2017) Chlorhexidine digluconate on chitosan-magnetic iron oxide nanoparticles modified electrode : Electroanalysis and mechanistic insights by computational simulations. Sens Actuators B Chem 240:417–425. https://doi.org/10.1016/j.snb.2016.08.181

    Article  CAS  Google Scholar 

  20. Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sens Actuators B Chem 148:93–102. https://doi.org/10.1016/j.snb.2010.03.088

    Article  CAS  Google Scholar 

  21. Fernandes DM, Costa M, Pereira C et al (2014) Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. J Colloid Interface Sci 432:207–213. https://doi.org/10.1016/j.jcis.2014.06.050

    Article  CAS  PubMed  Google Scholar 

  22. Fang B, Wang G, Zhang W et al (2005) Fabrication of Fe3O4 nanoparticles modified electrode and its application for voltammetric sensing of dopamine. Electroanalysis 17:744–748. https://doi.org/10.1002/elan.200403136

    Article  CAS  Google Scholar 

  23. Zhang Y, Cheng Y, Zhou Y et al (2013) Electrochemical sensor for bisphenol a based on magnetic nanoparticles decorated reduced graphene oxide. Talanta 107:211–218. https://doi.org/10.1016/j.talanta.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  24. Hou C, Tang W, Zhang C et al (2014) A novel and sensitive electrochemical sensor for bisphenol a determination based on carbon black supporting ferroferric oxide nanoparticles. Electrochim Acta 144:324–331. https://doi.org/10.1016/j.electacta.2014.08.053

    Article  CAS  Google Scholar 

  25. Alkasir RSJ, Ganesana M, Won YH et al (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: a comparative study with applications for the detection of bisphenol a. Biosens Bioelectron 26:43–49. https://doi.org/10.1016/j.bios.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Hrbac J, Halouzka V, Zboril R et al (2007) Carbon electrodes modified by nanoscopic iron(III) oxides to assemble chemical sensors for the hydrogen pėroxide amperometric detection. Electroanalysis 19:1850–1854. https://doi.org/10.1002/elan.200703938

    Article  CAS  Google Scholar 

  27. Zhang Z, Zhu H, Wang X, Yang X (2011) Sensitive electrochemical sensor for hydrogen peroxide using Fe3O4 magnetic nanoparticles as a mimic for peroxidase. Microchim Acta 174:183–189. https://doi.org/10.1007/s00604-011-0600-9

    Article  CAS  Google Scholar 

  28. Li N-N, Kang T-F, Zhang J-J et al (2015) Fe3O4@ZrO2 magnetic nanoparticles as a new electrode material for sensitive determination of organophosphorus agents. Anal Methods 7:5053–5059. https://doi.org/10.1039/C5AY00314H

    Article  CAS  Google Scholar 

  29. Arvand M, Orangpour S, Ghodsi N (2015) Differential pulse stripping voltammetric determination of the antipsychotic medication olanzapine at a magnetic nano-composite with a core/shell structure. RSC Adv 5:46095–46103. https://doi.org/10.1039/C5RA00061K

    Article  CAS  Google Scholar 

  30. Zhu W, Jiang G, Xu L et al (2015) Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione. Anal Chim Acta 886:37–47. https://doi.org/10.1016/j.aca.2015.05.036

    Article  CAS  PubMed  Google Scholar 

  31. Wen T, Zhu W, Xue C et al (2014) Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@polyaniline nanoparticles for clinical detection of creatinine. Biosens Bioelectron 56:180–185. https://doi.org/10.1016/j.bios.2014.01.013

    Article  CAS  PubMed  Google Scholar 

  32. Zhang M, Sheng Q, Nie F, Zheng J (2014) Synthesis of Cu nanoparticles-loaded Fe3O4@carbon core-shell nanocomposite and its application for electrochemical sensing of hydrogen peroxide. J Electroanal Chem 730:10–15. https://doi.org/10.1016/j.jelechem.2014.07.020

    Article  CAS  Google Scholar 

  33. Chandra S, Lang H, Bahadur D (2013) Polyaniline-iron oxide nanohybrid film as multi-functional label-free electrochemical and biomagnetic sensor for catechol. Anal Chim Acta 795:8–14. https://doi.org/10.1016/j.aca.2013.07.043

    Article  CAS  PubMed  Google Scholar 

  34. Heli H, Majdi S, Sattarahmady N (2010) Ultrasensitive sensing of N-acetyl-l-cysteine using an electrocatalytic transducer of nanoparticles of iron(III) oxide core-cobalt hexacyanoferrate shell. Sens Actuators B Chem 145:185–193. https://doi.org/10.1016/j.snb.2009.11.065

    Article  CAS  Google Scholar 

  35. Wang X, Yang T, Jiao K (2009) Electrochemical sensing the DNA damage in situ induced by a cathodic process based on Fe@Fe2O3 core-shell nanonecklace and Au nanoparticles mimicking metal toxicity pathways in vivo. Biosens Bioelectron 25:668–673. https://doi.org/10.1016/j.bios.2009.04.026

    Article  CAS  PubMed  Google Scholar 

  36. Sun X, Guo S, Liu Y, Sun S (2012) Dumbbell-like PtPd-Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett 12:4859–4863. https://doi.org/10.1021/nl302358e

    Article  CAS  PubMed  Google Scholar 

  37. Osman NSE, Thapliyal N, Alwan WS et al (2015) Synthesis and characterization of Ba0.5Co0.5Fe2O4 nanoparticle ferrites: application as electrochemical sensor for ciprofloxacin. J Mater Sci Mater Electron 26:5097–5105. https://doi.org/10.1007/s10854-015-3036-x

    Article  CAS  Google Scholar 

  38. Cui X, Sun YQ, Ma R, Song XC (2014) A hydrogen peroxide electrochemical sensor based on Co-doped Fe3O4 nanoparticles. Adv Mater Res 941–944:377–380. https://doi.org/10.4028/www.scientific.net/AMR.941-944.377

    Article  CAS  Google Scholar 

  39. Luo SX, Wu YH, Gou H, Liu Y (2013) A novel electrochemical sensor for the analysis of salbutamol in pork samples by using NiFe2O4 nanoparticles modified glassy carbon electrode. Adv Mater Res 850–851:1279–1282. https://doi.org/10.4028/www.scientific.net/AMR.850-851.1279

    Article  CAS  Google Scholar 

  40. Suresh R, Giribabu K, Manigandan R et al (2013) Electrochemical sensing property of Mn doped Fe3O4 nanoparticles. AIP Conf Proc 1512:402–403. https://doi.org/10.1063/1.4791081

    Article  CAS  Google Scholar 

  41. Ran G, Chen X, Xia Y (2017) Electrochemical detection of serotonin based on a poly(bromocresol green) film and Fe3O4 nanoparticles in a chitosan matrix. RSC Adv 7:1847–1851. https://doi.org/10.1039/C6RA25639B

    Article  CAS  Google Scholar 

  42. Benvidi A, Jahanbani S, Mirjalili BF, Zare R (2016) Electrocatalytic oxidation of hydrazine on magnetic bar carbon paste electrode modified with benzothiazole and iron oxide nanoparticles: simultaneous determination of hydrazine and phenol. Cuihua Xuebao/Chinese J Catal 37:549–560. https://doi.org/10.1016/S1872-2067(15)61046-4

    Article  CAS  Google Scholar 

  43. Uc-Cayetano GE (2016) Enhancement of electrochemical glucose sensing by using multiwall carbon nanotubes decorated with iron oxide nanoparticles. Int J Electrochem Sci 11:6356–6369. https://doi.org/10.20964/2016.07.85

    Article  CAS  Google Scholar 

  44. Madrakian T, Maleki S, Heidari M, Afkhami A (2016) An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples. Mater Sci Eng C 63:637–643. https://doi.org/10.1016/j.msec.2016.03.041

    Article  CAS  Google Scholar 

  45. Kumar S, Karfa P, Patra S et al (2016) Molecularly imprinted star polymer-modified superparamagnetic iron oxide nanoparticle for trace level sensing and separation of mancozeb. RSC Adv 6:36751–36760. https://doi.org/10.1039/C6RA03204D

    Article  CAS  Google Scholar 

  46. Eskandari K, Zarei H, Ghourchian H, Amoozadeh S-M (2015) The electrochemical study of glucose oxidase on gold-coated magnetic iron oxide nanoparticles. J Anal Chem 70:1254–1260. https://doi.org/10.1134/S1061934815100123

    Article  CAS  Google Scholar 

  47. Bonaiuto E, Magro M, Baratella D et al (2016) Ternary hybrid γ-Fe2O3/CrVI/amine oxidase nanostructure for electrochemical sensing: application for polyamine detection in tumor tissue. Chem - A Eur J 22:6846–6852. https://doi.org/10.1002/chem.201600156

    Article  CAS  Google Scholar 

  48. Zhang W (2016) Application of Fe3O4 nanoparticles functionalized carbon nanotubes for electrochemical sensing of DNA hybridization. J Appl Electrochem 46:559–566. https://doi.org/10.1007/s10800-016-0952-2

    Article  CAS  Google Scholar 

  49. Yang Z, Zhang C, Zhang J, Huang L (2013) Development of magnetic single-enzyme nanoparticles aselectrochemical sensor for glucose determination. Electrochim Acta 111:25–30. https://doi.org/10.1016/j.electacta.2013.08.009

    Article  CAS  Google Scholar 

  50. Zhang C, Ni H, Chen R et al (2015) Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Microchim Acta 182:1811–1818. https://doi.org/10.1007/s00604-015-1511-y

    Article  CAS  Google Scholar 

  51. Huang H, Liu X, Zhang X et al (2010) Fabrication of new magnetic nanoparticles (Fe3O4) grafted multiwall carbon nanotubes and heterocyclic compound modified electrode for electrochemical sensor. Electroanalysis 22:433–438. https://doi.org/10.1002/elan.200900335

    Article  CAS  Google Scholar 

  52. Yang S, Li G, Wang G et al (2015) A novel electrochemical sensor based on Fe2O3 nanoparticles/N-doped graphene for electrocatalytic oxidation of L-cysteine. J Solid State Electrochem 19:3613–3620. https://doi.org/10.1007/s10008-015-2980-y

    Article  CAS  Google Scholar 

  53. Ali M, Barman K, Jasimuddin S, Ghosh SK (2014) Fluid interface-mediated nanoparticle membrane as an electrochemical sensor. RSC Adv 4:61404–61408. https://doi.org/10.1039/C4RA12149J

    Article  CAS  Google Scholar 

  54. Suresh R, Vijayaraj A, Giribabu K et al (2013) Fabrication of iron oxide nanoparticles: magnetic and electrochemical sensing property. J Mater Sci Mater Electron 24:1256–1263. https://doi.org/10.1007/s10854-012-0916-1

    Article  CAS  Google Scholar 

  55. Rahman MM, Khan SB, Faisal M et al (2012) Detection of aprepitant drug based on low-dimensional un-doped iron oxide nanoparticles prepared by a solution method. Electrochim Acta 75:164–170. https://doi.org/10.1016/j.electacta.2012.04.093

    Article  CAS  Google Scholar 

  56. Prakash A, Chandra S, Bahadur D (2012) Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon N Y 50:4209–4219. https://doi.org/10.1016/j.carbon.2012.05.002

    Article  CAS  Google Scholar 

  57. Cui H, Yang W, Li X et al (2012) An electrochemical sensor based on a magnetic Fe3O4 nanoparticles and gold nanoparticles modified electrode for sensitive determination of trace amounts of arsenic(iii). Anal Methods 4:4176. https://doi.org/10.1039/c2ay25913c

    Article  CAS  Google Scholar 

  58. Zhang C, Ni H, Chen R et al (2016) Electrochemical sensing of hydroxylamine using a wax impregnated graphite electrode modified with a nanocomposite consisting of ferric oxide and copper hexacyanoferrate. Microchim Acta 183:723–729. https://doi.org/10.1007/s00604-015-1511-y

    Article  CAS  Google Scholar 

  59. Zhan X, Hu G, Wagberg T et al (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183:723–729. https://doi.org/10.1007/s00604-015-1718-y

    Article  CAS  Google Scholar 

  60. Song H, Xue G, Zhang J et al (2017) Simultaneous voltammetric determination of dopamine and uric acid using carbon-encapsulated hollow Fe3O4 nanoparticles anchored to an electrode modified with nanosheets of reduced graphene oxide. Microchim Acta 184:843–853. https://doi.org/10.1007/s00604-016-2067-1

    Article  CAS  Google Scholar 

  61. Zou J, Guo M, Feng Y et al (2017) Voltammetric determination of nonylphenol using a glassy carbon electrode modified with a nanocomposite consisting of CTAB, Fe3O4 nanoparticles and reduced graphene oxide. Microchim Acta 184:533–540. https://doi.org/10.1007/s00604-016-2047-5

    Article  CAS  Google Scholar 

  62. Yang Z, Sheng Q, Zhang S et al (2017) One-pot synthesis of Fe3O4/polypyrrole/graphene oxide nanocomposites for electrochemical sensing of hydrazine. Microchim Acta 184:2219–2226. https://doi.org/10.1007/s00604-017-2197-0

    Article  CAS  Google Scholar 

  63. Wang Y, Zhang Y, Hou C, Liu M (2016) Ultrasensitive electrochemical sensing of dopamine using reduced graphene oxide sheets decorated with p-toluenesulfonate-doped polypyrrole/Fe3O4 nanospheres. Microchim Acta 183:1145–1152. https://doi.org/10.1007/s00604-016-1742-6

    Article  CAS  Google Scholar 

  64. Wang Y, Wang W, Li G et al (2016) Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and FeO nanoparticles on reduced graphene oxide. Microchim Acta 183:3221–3228. https://doi.org/10.1007/s00604-016-1974-5

    Article  CAS  Google Scholar 

  65. Dai L, Du X, Jiang D et al (2017) Ultrafine α-Fe2O3 nanocrystals anchored on N-doped graphene: a nanomaterial with long hole diffusion length and efficient visible light-excited charge separation for use in photoelectrochemical sensing. Microchim Acta 184:137–145. https://doi.org/10.1007/s00604-016-1989-y

    Article  CAS  Google Scholar 

  66. Huang M, Zhao XL, Li F et al (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43. https://doi.org/10.1016/j.jpowsour.2014.12.005

    Article  CAS  Google Scholar 

  67. Battilocchio C, Hawkins JM, Ley SV (2014) Mild and selective heterogeneous catalytic hydration of nitriles to amides by flowing through manganese dioxide. Org Lett 16:1060–1063. https://doi.org/10.1021/ol403591c

    Article  CAS  PubMed  Google Scholar 

  68. Xiao W, Wang D, Lou XW (2010) Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J Phys Chem C 114:1694–1700. https://doi.org/10.1021/jp909386d

    Article  CAS  Google Scholar 

  69. Zhang J, Chu W, Jiang J, Zhao XS (2011) Synthesis, characterization and capacitive performance of hydrous manganese dioxide nanostructures. Nanotechnology 22:125703. https://doi.org/10.1088/0957-4484/22/12/125703

    Article  CAS  PubMed  Google Scholar 

  70. Chen Z, Chen Z, Yu A et al (2012) Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery. Electrochim Acta 69:295–300. https://doi.org/10.1016/j.electacta.2012.03.001

    Article  CAS  Google Scholar 

  71. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417. https://doi.org/10.1021/jp7108785

    Article  CAS  Google Scholar 

  72. Wang X, Li Y (2003) Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chemistry 9:300–306. https://doi.org/10.1002/chem.200390024

    Article  PubMed  Google Scholar 

  73. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147. https://doi.org/10.1021/jp076730b

    Article  CAS  Google Scholar 

  74. Eremenko AV, Dontsova EA, Nazarov AP et al (2012) Manganese dioxide nanostructures as a novel electrochemical mediator for thiol sensors. Electroanalysis 24:573–580. https://doi.org/10.1002/elan.201100535

    Article  CAS  Google Scholar 

  75. Zaidi SA, Shin JH (2015) A novel and highly sensitive electrochemical monitoring platform for 4-nitrophenol on MnO2 nanoparticles modified graphene surface. RSC Adv 5:88996–89002. https://doi.org/10.1039/C5RA14471J

    Article  CAS  Google Scholar 

  76. Yang S, Li G, Wang G et al (2015) Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sens Actuators B Chem 221:172–178. https://doi.org/10.1016/j.snb.2015.06.110

    Article  CAS  Google Scholar 

  77. Majd SM, Salimi A, Astinchap B (2016) Manganese oxide nanoparticles/reduced graphene oxide as novel electrochemical platform for immobilization of FAD and its application as highly sensitive persulfate sensor. Electroanalysis 28:493–502. https://doi.org/10.1002/elan.201500421

    Article  CAS  Google Scholar 

  78. Majd SM, Teymourian H, Salimi A (2013) Fabrication of an electrochemical L-cysteine sensor based on graphene nanosheets decorated manganese oxide nanocomposite modified glassy carbon electrode. Electroanalysis 25:2201–2210. https://doi.org/10.1002/elan.201300245

    Article  CAS  Google Scholar 

  79. Han ZJ, Seo DH, Yick S et al (2014) MnOx/carbon nanotube/reduced graphene oxide nanohybrids as high-performance supercapacitor electrodes. NPG Asia Mater 6:e140. https://doi.org/10.1038/am.2014.100

    Article  CAS  Google Scholar 

  80. Wang Y, Zhang S, Bai W, Zheng J (2016) Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: a new nonenzymatic electrochemical sensor for glucose. Talanta 149:211–216. https://doi.org/10.1016/j.talanta.2015.11.040

    Article  CAS  PubMed  Google Scholar 

  81. Pan Y, Hou Z, Yi W et al (2015) Hierarchical hybrid film of MnO2 nanoparticles/multi-walled fullerene nanotubes–graphene for highly selective sensing of hydrogen peroxide. Talanta 141:86–91. https://doi.org/10.1016/j.talanta.2015.03.059

    Article  CAS  PubMed  Google Scholar 

  82. Vilian ATE, Chen S (2015) Preparation of carbon nanotubes decorated with manganese dioxide nanoparticles for electrochemical determination of ferulic acid. Microchim Acta 182:1103–1111. https://doi.org/10.1007/s00604-014-1431-2

    Article  CAS  Google Scholar 

  83. Vilian ATE, Madhu R, Chen S, Veeramani V (2015) Facile synthesis of MnO2/carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. J Mater Chem B 3:6285–6292. https://doi.org/10.1039/C5TB00508F

    Article  CAS  Google Scholar 

  84. Farid MM, Goudini L, Piri F et al (2016) Molecular imprinting method for fabricating novel glucose sensor: polyvinyl acetate electrode reinforced by MnO2/CuO loaded on graphene oxide nanoparticles. Food Chem 194:61–67. https://doi.org/10.1016/j.foodchem.2015.07.128

    Article  CAS  PubMed  Google Scholar 

  85. Wang X, Luo C, Li L, Duan H (2015) Highly selective and sensitive electrochemical sensor for L-cysteine detection based on graphene oxide/multiwalled carbon nanotube/manganese dioxide/gold nanoparticles composite. J Electroanal Chem 757:100–106. https://doi.org/10.1016/j.jelechem.2015.09.023

    Article  CAS  Google Scholar 

  86. Rahman MM, Khan SB, Gruner G et al (2013) Chloride ion sensors based on low-dimensional α-MnO2-Co3O4 nanoparticles fabricated glassy carbon electrodes by simple I-V technique. Electrochim Acta 103:143–150. https://doi.org/10.1016/j.electacta.2013.04.067

    Article  CAS  Google Scholar 

  87. Xu W, Xue S, Yi H et al (2015) A sensitive electrochemical aptasensor based on the co-catalysis of hemin/G-quadruplex, platinum nanoparticles and flower-like MnO2 nanosphere functionalized multi-walled carbon nanotubes. Chem Commun 51:1472–1474. https://doi.org/10.1039/C4CC08860C

    Article  CAS  Google Scholar 

  88. Gan T, Shi Z, Wang K et al (2015) Rifampicin determination in human serum and urine based on a disposable carbon paste microelectrode modified with a hollow manganese oxide@mesoporous silica oxide core-shell nanohybrid. Can J Chem 93:1061–1068. https://doi.org/10.1139/cjc-2015-0017

    Article  CAS  Google Scholar 

  89. Cheng C, Huang Y, Wang N et al (2015) Facile fabrication of Mn2O3 nanoparticle-assembled hierarchical hollow spheres and their sensing for hydrogen peroxide. ACS Appl Mater Interfaces 7:9526–9533. https://doi.org/10.1021/acsami.5b00884

    Article  CAS  PubMed  Google Scholar 

  90. Wu Z-L, Li C-K, Yu J-G, Chen X-Q (2017) MnO2/reduced graphene oxide nanoribbons: facile hydrothermal preparation and their application in amperometric detection of hydrogen peroxide. Sens Actuators B Chem 239:544–552. https://doi.org/10.1016/j.snb.2016.08.062

    Article  CAS  Google Scholar 

  91. Li Y, Zhang J, Zhu H et al (2010) Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing. Electrochim Acta 55:5123–5128. https://doi.org/10.1016/j.electacta.2010.04.017

    Article  CAS  Google Scholar 

  92. Zhang S, Zheng J (2016) Synthesis of single-crystal α-MnO2 nanotubes-loaded Ag@C core–shell matrix and their application for electrochemical sensing of nonenzymatic hydrogen peroxide. Talanta 159:231–237. https://doi.org/10.1016/j.talanta.2016.06.014

    Article  CAS  PubMed  Google Scholar 

  93. Mohseni G, Negahdary M, Faramarzi H et al (2012) Voltammetry behavior of modified carbon paste electrode with cytochrome C and Mn2O3 nanoparticles for hydrogen peroxide sensing. Int J Electrochem Sci 7:12098–12109

    CAS  Google Scholar 

  94. Zhu H, Sigdel A, Zhang S et al (2014) Core/shell au/MnO nanoparticles prepared through controlled oxidation of AuMn as an electrocatalyst for sensitive H2O2 detection. Angew Chemie - Int Ed 53:12508–12512. https://doi.org/10.1002/anie.201406281

    Article  CAS  Google Scholar 

  95. Rahman MM, Gruner G, Al-Ghamdi MS et al (2013) Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes. Chem Cent J 7:60. https://doi.org/10.1186/1752-153X-7-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharma JK, Srivastava P, Ameen S et al (2016) Azadirachta indica plant-assisted green synthesis of Mn3O4 nanoparticles: excellent thermal catalytic performance and chemical sensing behavior. J Colloid Interface Sci 472:220–228. https://doi.org/10.1016/j.jcis.2016.03.052

    Article  CAS  PubMed  Google Scholar 

  97. Machini WBS, Martin CS, Martinez MT et al (2013) Development of an electrochemical sensor based on nanostructured hausmannite-type manganese oxide for detection of sodium ions. Sens Actuators B Chem 181:674–680. https://doi.org/10.1016/j.snb.2013.01.030

    Article  CAS  Google Scholar 

  98. Amal Raj M, Abraham John S (2014) Graphene layer modified glassy carbon electrode for the determination of norepinephrine and theophylline in pharmaceutical formulations. Anal Methods 6:2181. https://doi.org/10.1039/c3ay42279h

    Article  CAS  Google Scholar 

  99. MansouriMajd S, Teymourian H, Salimi A, Hallaj R (2013) Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode. Electrochim Acta 108:707–716. https://doi.org/10.1016/j.electacta.2013.07.029

    Article  CAS  Google Scholar 

  100. Reza KK, Ali MA, Singh MK et al (2017) Amperometric enzymatic determination of bisphenol a using an ITO electrode modified with reduced graphene oxide and Mn3O4 nanoparticles in a chitosan matrix. Microchim Acta 184:1809–1816. https://doi.org/10.1007/s00604-017-2171-x

    Article  CAS  Google Scholar 

  101. Yao Z, Yang X, Niu Y et al (2017) Voltammetric dopamine sensor based on a gold electrode modified with reduced graphene oxide and Mn3O4 on gold nanoparticles. Microchim Acta 184:2081–2088. https://doi.org/10.1007/s00604-017-2210-7

    Article  CAS  Google Scholar 

  102. Rao D, Zhang X, Sheng Q, Zheng J (2016) Highly improved sensing of dopamine by using glassy carbon electrode modified with MnO2, graphene oxide, carbon nanotubes and gold nanoparticles. Microchim Acta 183:2597–2604. https://doi.org/10.1007/s00604-016-1902-8

    Article  CAS  Google Scholar 

  103. He X, Hu C (2011) Building three-dimensional Pt catalysts on TiO2 nanorod arrays for effective ethanol electrooxidation. J Power Sources 196:3119–3123. https://doi.org/10.1016/j.jpowsour.2010.12.001

    Article  CAS  Google Scholar 

  104. Bao SJ, Li CM, Zang JF et al (2008) New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv Funct Mater 18:591–599. https://doi.org/10.1002/adfm.200700728

    Article  CAS  Google Scholar 

  105. Kafi AKM, Wu G, Benvenuto P, Chen A (2011) Highly sensitive amperometric H2O2 biosensor based on hemoglobin modified TiO2 nanotubes. J Electroanal Chem 662:64–69. https://doi.org/10.1016/j.jelechem.2011.03.021

    Article  CAS  Google Scholar 

  106. Luo Y, Liu H, Rui Q, Tian Y (2009) Detection of extracellular H2O2 released from human liver cancer cells based on TiO2 nanoneedles with enhanced electron transfer of cytochrome c. Anal Chem 81:3035–3041. https://doi.org/10.1021/ac802721x

    Article  CAS  PubMed  Google Scholar 

  107. Jiang LC, Zhang WD (2009) Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanalysis 21:988–993. https://doi.org/10.1002/elan.200804502

    Article  CAS  Google Scholar 

  108. Luo Y, Tian Y, Zhu A et al (2009) Direct electron transfer of superoxide dismutase promoted by high conductive TiO2 nanoneedles. Electrochem Commun 11:174–176. https://doi.org/10.1016/j.elecom.2008.10.056

    Article  CAS  Google Scholar 

  109. Liu A, Wei M, Honma I, Zhou H (2006) Biosensing properties of titanate-nanotube films: selective detection of dopamine in the presence of ascorbate and uric acid. Adv Funct Mater 16:371–376. https://doi.org/10.1002/adfm.200500202

    Article  CAS  Google Scholar 

  110. Liao J, Lin S, Yang Y et al (2015) Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotube arrays-based gate electrodes. Sens Actuators B Chem 208:457–463. https://doi.org/10.1016/j.snb.2014.11.038

    Article  CAS  Google Scholar 

  111. Luo Z, Ma X, Yang D et al (2013) Synthesis of highly dispersed titanium dioxide nanoclusters on reduced graphene oxide for increased glucose sensing. Carbon N Y 7:3–9

    Google Scholar 

  112. Topoglidis E, Lutz T, Willis RL et al (2000) Protein adsorption on nanoporous TiO2 films: a novel approach to studying photoinduced protein/electrode transfer reactions. Faraday Discuss 116:35–46-75. https://doi.org/10.1039/b003313h

    Article  CAS  Google Scholar 

  113. Li Q, Luo G, Feng J (2001) Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis 13:359–363

    Article  CAS  Google Scholar 

  114. Yang L, Zhao H, Fan S et al (2014) A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol a based on the ultrafine Pd nanoparticle @ TiO2 functionalized SiC. Anal Chim Acta 852:28–36. https://doi.org/10.1016/j.aca.2014.08.037

    Article  CAS  PubMed  Google Scholar 

  115. Prasad BB, Srivastava A, Tiwari MP (2013) Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of d- and l-aspartic acid. Mater Sci Eng C 33:4071–4080. https://doi.org/10.1016/j.msec.2013.05.052

    Article  CAS  Google Scholar 

  116. Huang J, Zhang X, Liu S et al (2011) Development of molecularly imprinted electrochemical sensor with titanium oxide and gold nanomaterials enhanced technique for determination of 4-nonylphenol. Sens Actuators B Chem 152:292–298. https://doi.org/10.1016/j.snb.2010.12.022

    Article  CAS  Google Scholar 

  117. Hu L, Fong CC, Zhang X et al (2016) Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol a. Environ Sci Technol 50:4430–4438. https://doi.org/10.1021/acs.est.5b05857

    Article  CAS  PubMed  Google Scholar 

  118. Mazloum-Ardakani M, Khoshroo A (2013) Nano composite system based on coumarin derivative-titanium dioxide nanoparticles and ionic liquid: determination of levodopa and carbidopa in human serum and pharmaceutical formulations. Anal Chim Acta 798:25–32. https://doi.org/10.1016/j.aca.2013.08.045

    Article  CAS  PubMed  Google Scholar 

  119. Fan Y, Huang KJ, Niu DJ et al (2011) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685–4690. https://doi.org/10.1016/j.electacta.2011.02.114

    Article  CAS  Google Scholar 

  120. Wang W, Xie Y, Xia C et al (2014) Titanium dioxide nanotube arrays modified with a nanocomposite of silver nanoparticles and reduced graphene oxide for electrochemical sensing. Microchim Acta 181:1325–1331. https://doi.org/10.1007/s00604-014-1258-x

    Article  CAS  Google Scholar 

  121. Tian L, Wang B, Chen R et al (2014) Determination of quercetin using a photo-electrochemical sensor modified with titanium dioxide and a platinum(II)-porphyrin complex. Microchim Acta 182:687–693. https://doi.org/10.1007/s00604-014-1374-7

    Article  CAS  Google Scholar 

  122. Zhou L, Xiong W, Liu S (2014) Preparation of a gold electrode modified with Au-TiO2 nanoparticles as an electrochemical sensor for the detection of mercury(II) ions. J Mater Sci 50:769–776. https://doi.org/10.1007/s10853-014-8636-y

    Article  CAS  Google Scholar 

  123. Gao P, Ma H, Yan T et al (2015) Construction of dentate bonded TiO2-CdSe heterostructures with enhanced photoelectrochemical properties: versatile labels toward photoelectrochemical and electrochemical sensing. Dalton Trans 44:773–781. https://doi.org/10.1039/c4dt02576h

    Article  CAS  PubMed  Google Scholar 

  124. Ravishankar TN, Suresh Kumar K, Teixeira SR et al (2016) Ag doped titanium dioxide nanocomposite-modified glassy carbon electrode as electrochemical interface for catechol sensing. Electroanalysis 28:452–461. https://doi.org/10.1002/elan.201500238

    Article  CAS  Google Scholar 

  125. Zhang X, Zeng T, Hu C et al (2016) Studies on fabrication and application of arsenic electrochemical sensors based on titanium dioxide nanoparticle modified gold strip electrodes. Anal Methods 8:1162–1169. https://doi.org/10.1039/C5AY02397A

    Article  CAS  Google Scholar 

  126. Gholivand MB, Shamsipur M, Amini N (2014) Nonenzymatic L-lysine amino acid detection using titanium oxide nanoparticles/multi wall carbon nanotube composite electrodes. Electrochim Acta 123:569–575. https://doi.org/10.1016/j.electacta.2013.12.190

    Article  CAS  Google Scholar 

  127. Hughes MK, Khanh P, Nguyen Q, Suzanne KL, Han C, Dionysiou DD (2013) A novel sol-gel (TiO2/ZrO2) carbon paste electrode to detect phenol and derivatives of phenol utilizing cyclic voltammetry. JSM Chem 1:1001

  128. Scremin J, Barbosa ECM, Salamanca-Neto CAR et al (2018) Amperometric determination of ascorbic acid with a glassy carbon electrode modified with TiO2-gold nanoparticles integrated into carbon nanotubes. Microchim Acta 185:251. https://doi.org/10.1007/s00604-018-2785-7

    Article  CAS  Google Scholar 

  129. Wang Y, Bian F, Qin X, Wang Q (2018) Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu ( III ) -doped CdS quantum dots. Microchim Acta 185:161. https://doi.org/10.1007/s00604-018-2711-z

    Article  CAS  Google Scholar 

  130. Hallaj R, Haghighi N (2017) Photoelectrochemical amperometric sensing of cyanide using a glassy carbon electrode modified with graphene oxide and titanium dioxide nanoparticles. Microchim Acta 184:3581–3590. https://doi.org/10.1007/s00604-017-2366-1

    Article  CAS  Google Scholar 

  131. Jin D, Xu Q, Yu L, Hu X (2015) Photoelectrochemical detection of the herbicide clethodim by using the modified metal-organic framework amino-MIL-125(Ti)/TiO2. Microchim Acta 182:1885–1892. https://doi.org/10.1007/s00604-015-1505-9

    Article  CAS  Google Scholar 

  132. Zhang H, Zhu Q, Zhang Y et al (2007) One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv Funct Mater 17:2766–2771. https://doi.org/10.1002/adfm.200601146

    Article  CAS  Google Scholar 

  133. Tarascon J-M, Poizot P, Laruelle S et al (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499. https://doi.org/10.1038/35035045

    Article  PubMed  Google Scholar 

  134. Xu F, Deng M, Li G, Chen S, Wang L (2013) Electrochemical behavior of cuprous oxide - reduced graphene oxide nanocomposites and their application in nonenzymatic hydrogen peroxide sensing. Electrochim Acta 88:59–65. https://doi.org/10.1016/j.electacta.2012.10.070

    Article  CAS  Google Scholar 

  135. Zhang J, Liu J, Peng Q et al (2006) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18:867–871. https://doi.org/10.1021/cm052256f

    Article  CAS  Google Scholar 

  136. Gou L, Murphy CJ (2004) Controlling the size of Cu2O nanocubes from 200 to 25 nm. J Mater Chem 14:735–738

    Article  CAS  Google Scholar 

  137. Ng SY, Ngan AHW (2013) One- and two-dimensional cuprous oxide nano / micro structures fabricated on highly orientated pyrolytic graphite ( HOPG ) by electrodeposition. Electrochim Acta:379–386. https://doi.org/10.1016/j.electacta.2013.10.067

  138. Zhang X, Wang G, Liu X et al (2008) Different CuO nanostructures : synthesis, characterization, and applications for glucose sensors. J Phys Chem C 112:16845–16849

    Article  CAS  Google Scholar 

  139. Hsu YW, Hsu TK, Sun CL et al (2012) Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochim Acta 82:152–157. https://doi.org/10.1016/j.electacta.2012.03.094

    Article  CAS  Google Scholar 

  140. Yang J, Jiang L, Zhang W, Gunasekaran S (2010) A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82:25–33. https://doi.org/10.1016/j.talanta.2010.03.047

    Article  CAS  PubMed  Google Scholar 

  141. Jiang L, Zhang W (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407. https://doi.org/10.1016/j.bios.2009.10.038

    Article  CAS  PubMed  Google Scholar 

  142. Quoc Dung N, Patil D, Jung H, Kim D (2013) A high-performance nonenzymatic glucose sensor made of CuO-SWCNT nanocomposites. Biosens Bioelectron 42:280–286. https://doi.org/10.1016/j.bios.2012.10.044

    Article  CAS  PubMed  Google Scholar 

  143. Zhang J, Wang C, Tang Y et al (2013) Serum immunoglobulin A/C3 ratio predicts progression of immunoglobulin a nephropathy. Nephrology 18:125–131. https://doi.org/10.1111/nep.12010

    Article  CAS  PubMed  Google Scholar 

  144. Zhang J, Bai C, Song Y (2013) MIOTIC study: a prospective, multicenter, randomized study to evaluate the long-term efficacy of mobile phone-based internet of things in the management of patients with stable COPD. Int J Chron Obstruct Pulmon Dis:433. https://doi.org/10.2147/COPD.S50205

  145. Zhang J, Ma J, Zhang S et al (2015) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens Actuators B Chem 211:385–391. https://doi.org/10.1016/j.snb.2015.01.100

    Article  CAS  Google Scholar 

  146. Li B, Zhou Y, Wu W et al (2015) Highly selective and sensitive determination of dopamine by the novel molecularly imprinted poly (nicotinamide)/CuO nanoparticles modified electrode. Biosens Bioelectron 67:121–128. https://doi.org/10.1016/j.bios.2014.07.053

    Article  CAS  PubMed  Google Scholar 

  147. Yang J, Ye H, Zhao F, Zeng B (2016) A novel CuxO nanoparticles @ ZIF-8 composite derived from core-shell metal-organic frameworks for highly selective electrochemical sensing of hydrogen peroxide. ACS Appl Mater Interfaces 8:20407–20414. https://doi.org/10.1021/acsami.6b06436

    Article  CAS  PubMed  Google Scholar 

  148. Miao X, Yuan R, Chai Y et al (2008) Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J Electroanal Chem 612:157–163. https://doi.org/10.1016/j.jelechem.2007.09.026

    Article  CAS  Google Scholar 

  149. Song H, Ni Y, Kokot S (2015) A novel electrochemical sensor based on the copper-doped copper oxide nano-particles for the analysis of hydrogen peroxide. Colloids Surfaces A Physicochem Eng Asp 465:153–158. https://doi.org/10.1016/j.colsurfa.2014.10.047

    Article  CAS  Google Scholar 

  150. He G, Jiang J, Wu D et al (2016) A novel nonenzymatic hydrogen peroxide electrochemical sensor based on facile synthesis of copper oxide nanoparticles dopping into graphene sheets @ cerium oxide nanocomposites sensitized screen printed electrode. Int J Electrochem Sci 11:8486–8498. https://doi.org/10.20964/2016.10.34

    Article  CAS  Google Scholar 

  151. Ping J, Ru S, Fan K, Wu J (2010) Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim Acta 171:117–123. https://doi.org/10.1007/s00604-010-0420-3

    Article  CAS  Google Scholar 

  152. Liu J, Yang C, Shang Y et al (2018) Preparation of a nanocomposite material consisting of cuprous oxide, polyaniline and reduced graphene oxide, and its application to the electrochemical determination of hydrogen peroxide. Microchim Acta 185:172. https://doi.org/10.1007/s00604-018-2717-6

    Article  CAS  Google Scholar 

  153. Alizadeh T, Mirzagholipur S (2014) A nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles – graphene nanocomposite. Sens Actuators B Chem 198:438–447. https://doi.org/10.1016/j.snb.2014.03.049

    Article  CAS  Google Scholar 

  154. Dhara K, Thiagarajan R, Nair BG (2015) Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Microchim Acta 182:2183–2192. https://doi.org/10.1007/s00604-015-1549-x

    Article  CAS  Google Scholar 

  155. Yan X, Yang J, Ma L et al (2015) Size-controlled synthesis of Cu2O nanoparticles on reduced graphene oxide sheets and their application as non-enzymatic glucose sensor materials. J Solid State Electrochem 19:3195–3199. https://doi.org/10.1007/s10008-015-2911-y

    Article  CAS  Google Scholar 

  156. Jin Z, Li P, Zheng B, Xiao D (2014) CuO – Ag2O nanoparticles grown on a AgCuZn alloy substrate in situ for use as a highly sensitive non- enzymatic glucose sensor. Anal Methods 6:2215–2220. https://doi.org/10.1039/c3ay42141d

    Article  CAS  Google Scholar 

  157. Lu N, Shao C, Li X, Miao F (2016) CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceram Int 42:11285–11293. https://doi.org/10.1016/j.ceramint.2016.04.046

    Article  CAS  Google Scholar 

  158. Yu H, Jian X, Jin J et al (2015) Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchim Acta 182:157–165. https://doi.org/10.1007/s00604-014-1310-x

    Article  CAS  Google Scholar 

  159. Mei LP, Song P, Feng JJ et al (2015) Nonenzymatic amperometric sensing of glucose using a glassy carbon electrode modified with a nanocomposite consisting of reduced graphene oxide decorated with Cu2O nanoclusters. Microchim Acta 182:1701–1708. https://doi.org/10.1007/s00604-015-1501-0

    Article  CAS  Google Scholar 

  160. Li S-J, Hou L-L, Yuan B-Q et al (2016) Enzyme-free glucose sensor using a glassy carbon electrode modified with reduced graphene oxide decorated with mixed copper and cobalt oxides. Microchim Acta 183:1813–1821. https://doi.org/10.1007/s00604-016-1817-4

    Article  CAS  Google Scholar 

  161. Zhao C, Wu X, Li P et al (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348. https://doi.org/10.1007/s00604-017-2229-9

    Article  CAS  Google Scholar 

  162. Leonardi SG, Marini S, Espro C et al (2017) In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchim Acta 184:2375–2385. https://doi.org/10.1007/s00604-017-2232-1

    Article  CAS  Google Scholar 

  163. Foroughi F, Rahsepar M, Hadianfard MJ, Kim H (2018) Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Microchim Acta 185:1–9. https://doi.org/10.1007/s00604-017-2558-8

    Article  CAS  Google Scholar 

  164. Reddy S, Swamy BEK, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86. https://doi.org/10.1016/j.electacta.2011.11.091

    Article  CAS  Google Scholar 

  165. Gu W, Wang M, Mao X et al (2015) A facile sensitive L-tyrosine electrochemical sensor based on coupled CuO/Cu2O nanoparticles and multi-walled carbon nanotubes nanocomposite film. Anal Methods 7:1313–1320. https://doi.org/10.1039/C4AY01925C

    Article  CAS  Google Scholar 

  166. Zhou S, Wei D, Shi H et al (2013) Sodium dodecyl benzene sulfonate functionalized graphene for confined electrochemical growth of metal / oxide nanocomposites for sensing application. Talanta 107:349–355. https://doi.org/10.1016/j.talanta.2013.01.041

    Article  CAS  PubMed  Google Scholar 

  167. Khoshhesab ZM (2015) Simultaneous electrochemical determination of acetaminophen, caffeine and ascorbic acid using a new electrochemical sensor based on CuO-graphene nanocomposite. RSC Adv 5:95140–95148. https://doi.org/10.1039/C5RA14138A

    Article  CAS  Google Scholar 

  168. Mei LP, Feng JJ, Wu L et al (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183:2039–2046. https://doi.org/10.1007/s00604-016-1845-0

    Article  CAS  Google Scholar 

  169. Li H, Ye L, Wang Y, Xie C (2018) A glassy carbon electrode modified with hollow cubic cuprous oxide for voltammetric sensing of L-cysteine. Microchim Acta 185:5. https://doi.org/10.1007/s00604-017-2578-4

    Article  CAS  Google Scholar 

  170. Mehta SK, Singh K, Umar A et al (2012) Ultra-high sensitive hydrazine chemical sensor based on low-temperature grown ZnO nanoparticles. Electrochim Acta 69:128–133. https://doi.org/10.1016/j.electacta.2012.02.091

    Article  CAS  Google Scholar 

  171. Zhou Y, Wang L, Ye Z et al (2014) Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors. Electrochim Acta 115:277–282. https://doi.org/10.1016/j.electacta.2013.10.150

    Article  CAS  Google Scholar 

  172. Qiu Y, Chen W, Yang S (2010) Facile hydrothermal preparation of hierarchically assembled, porous single-crystalline ZnO nanoplates and their application in dye-sensitized solar cells. J Mater Chem 20:1001–1006. https://doi.org/10.1039/B917305F

    Article  CAS  Google Scholar 

  173. Zhang G, Shen X, Yang Y (2011) Facile synthesis of monodisperse porous ZnO spheres by a soluble starch-assisted method and their photocatalytic activity. J Phys Chem C 115:7145–7152. https://doi.org/10.1021/jp110256s

    Article  CAS  Google Scholar 

  174. Umar A, Akhtar MS, Al-Hajry A et al (2012) Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications. Mater Res Bull 47:2407–2414. https://doi.org/10.1016/j.materresbull.2012.05.028

    Article  CAS  Google Scholar 

  175. Xing G, Wang D, Yi J et al (2010) Correlated d0 ferromagnetism and photoluminescence in undoped ZnO nanowires. Appl Phys Lett 96:1–4. https://doi.org/10.1063/1.3340930

    Article  CAS  Google Scholar 

  176. Son D-Y, Im J-H, Kim H-S, Park N-G (2014) 11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system. J Phys Chem C 118:16567–16573. https://doi.org/10.1021/jp412407j

    Article  CAS  Google Scholar 

  177. Kumar R, Kumar G, Umar A (2013) ZnO nano-mushrooms for photocatalytic degradation of methyl orange. Mater Lett 97:100–103. https://doi.org/10.1016/j.matlet.2013.01.044

    Article  CAS  Google Scholar 

  178. Lin L, Peng X, Chen S et al (2015) Preparation of diverse flower-like ZnO nanoaggregates for dye-sensitized solar cells. RSC Adv 5:25215–25221. https://doi.org/10.1039/C5RA01938A

    Article  CAS  Google Scholar 

  179. Tan ST, Umar AA, Balouch A et al (2014) ZnO nanocubes with (1 0 1) basal plane photocatalyst prepared via a low-frequency ultrasonic assisted hydrolysis process. Ultrason Sonochem 21:754–760. https://doi.org/10.1016/j.ultsonch.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  180. Umar A, Hahn YB (2006) Aligned hexagonal coaxial-shaped ZnO nanocolumns on steel alloy by thermal evaporation. Appl Phys Lett 88:173120. https://doi.org/10.1063/1.2200472

    Article  CAS  Google Scholar 

  181. Kang BS, Wang HT, Ren F et al (2007) Enzymatic glucose detection using ZnO nanorods on the gate region of AlGaNGaN high electron mobility transistors. Appl Phys Lett 91:2005–2008. https://doi.org/10.1063/1.2825574

    Article  CAS  Google Scholar 

  182. Chekin F, Yazdaninia M (2014) A sensor based on incorporating Ni2+ into ZnO nanoparticles-multi wall carbon nanotubes-poly methyl metacrylat nanocomposite film modified carbon paste electrode for determination of carbohydrates. Russ J Electrochem 50:967–973. https://doi.org/10.1134/S1023193514040041

    Article  CAS  Google Scholar 

  183. Tashkhourian J, Hemmateenejad B, Beigizadeh H et al (2014) ZnO nanoparticles and multiwalled carbon nanotubes modified carbon paste electrode for determination of naproxen using electrochemical techniques. J Electroanal Chem 714–715:103–108. https://doi.org/10.1016/j.jelechem.2013.12.026

    Article  CAS  Google Scholar 

  184. Afkhami A, Kafrashi F, Madrakian T (2015) Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode. Ionics (Kiel) 21:2937–2947. https://doi.org/10.1007/s11581-015-1486-z

    Article  CAS  Google Scholar 

  185. Wayu MB, King JE, Johnson JA, Chusuei CC (2015) A zinc oxide carbon nanotube based sensor for in situ monitoring of hydrogen peroxide in swimming pools. Electroanalysis 27:2552–2558. https://doi.org/10.1002/elan.201500187

    Article  CAS  Google Scholar 

  186. Jiang L, Gu S, Ding Y et al (2014) Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale 6:207–214. https://doi.org/10.1039/c3nr03620k

    Article  CAS  PubMed  Google Scholar 

  187. Kalambate PK, Rawool CR, Srivastava AK (2016) Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite modified carbon paste electrode employing differential pulse voltammetry. Sens Actuators B Chem 237:196–205. https://doi.org/10.1016/j.snb.2016.06.019

    Article  CAS  Google Scholar 

  188. Alam MK, Rahman MM, Abbas M et al (2017) Ultra-sensitive 2-nitrophenol detection based on reduced graphene oxide/ZnO nanocomposites. J Electroanal Chem 788:66–73. https://doi.org/10.1016/j.jelechem.2017.02.004

    Article  CAS  Google Scholar 

  189. Hu YF, Zhang ZH, Bin ZH et al (2012) Sensitive and selective imprinted electrochemical sensor for p-nitrophenol based on ZnO nanoparticles/carbon nanotubes doped chitosan film. Thin Solid Films 520:5314–5321. https://doi.org/10.1016/j.tsf.2011.11.083

    Article  CAS  Google Scholar 

  190. Roy E, Patra S, Tiwari A, et al (2017) Single cell imprinting on the surface of Ag–ZnO bimetallic nanoparticle modified graphene oxide sheets for targeted detection, removal and photothermal killing of E. coli Biosens Bioelectron 89:620–626. doi: https://doi.org/10.1016/j.bios.2015.12.085

  191. Hou C, Liu H, Zhang D et al (2016) Synthesis of ZnO nanorods-Au nanoparticles hybrids via in-situ plasma sputtering-assisted method for simultaneous electrochemical sensing of ascorbic acid and uric acid. J Alloys Compd 666:178–184. https://doi.org/10.1016/j.jallcom.2016.01.092

    Article  CAS  Google Scholar 

  192. Fang L, Huang K, Zhang B et al (2014) Nanosheet-based 3D hierarchical ZnO structure decorated with Au nanoparticles for enhanced electrochemical detection of dopamine. RSC Adv 4:48986–48993. https://doi.org/10.1039/C4RA06090C

    Article  CAS  Google Scholar 

  193. Tian K, Alex S, Siegel G, Tiwari A (2015) Enzymatic glucose sensor based on Au nanoparticle and plant-like ZnO film modified electrode. Mater Sci Eng C 46:548–552. https://doi.org/10.1016/j.msec.2014.10.064

    Article  CAS  Google Scholar 

  194. Fang L, Liu B, Liu L et al (2016) Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor. Sens Actuators B Chem 222:1096–1102. https://doi.org/10.1016/j.snb.2015.08.032

    Article  CAS  Google Scholar 

  195. Ghazizadeh AJ, Afkhami A, Bagheri H (2018) Voltammetric determination of 4-nitrophenol using a glassy carbon electrode modified with a gold-ZnO-SiO2 nanostructure. Microchim Acta 185:2–11. https://doi.org/10.1007/s00604-018-2840-4

    Article  CAS  Google Scholar 

  196. Zhang Y, Han T, Wang Z et al (2017) In situ formation of N-doped carbon film-immobilized Au nanoparticles-coated ZnO jungle on indium tin oxide electrode for excellent high-performance detection of hydrazine. Sens Actuators B Chem 243:1231–1239. https://doi.org/10.1016/j.snb.2016.12.085

    Article  CAS  Google Scholar 

  197. Hussain M, Sun H, Karim S et al (2016) Noble metal nanoparticle-functionalized ZnO nanoflowers for photocatalytic degradation of RhB dye and electrochemical sensing of hydrogen peroxide. J Nanopart Res 18:1–14. https://doi.org/10.1007/s11051-016-3397-y

    Article  CAS  Google Scholar 

  198. Zhang X, Zhang R, Yang A et al (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite. Microchim Acta 184:4367–4374. https://doi.org/10.1007/s00604-017-2477-8

    Article  CAS  Google Scholar 

  199. Xi X, Li J, Wang H et al (2015) Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Microchim Acta 182:1273–1279. https://doi.org/10.1007/s00604-015-1448-1

    Article  CAS  Google Scholar 

  200. Yang Y, Wang Y, Bao X, Li H (2016) Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose. J Electroanal Chem 775:163–170. https://doi.org/10.1016/j.jelechem.2016.04.041

    Article  CAS  Google Scholar 

  201. Reddy S, Swamy BEK, Aruna S, Kumar M, Shashanka R, Jayadevappa H (2012) Preparation of NiO/ZnO hybrid nanoparticles for electrochemical sensing of dopamine and uric acid. Chem Sensors 2:17

  202. Yumak T, Kuralay F, Muti M et al (2011) Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization. Colloids Surf B Biointerfaces 86:397–403. https://doi.org/10.1016/j.colsurfb.2011.04.030

    Article  CAS  PubMed  Google Scholar 

  203. Andre RS, Pavinatto A, Mercante LA et al (2015) Improving the electrochemical properties of polyamide 6/polyaniline electrospun nanofibers by surface modification with ZnO nanoparticles. RSC Adv 5:73875–73881. https://doi.org/10.1039/C5RA15588F

    Article  CAS  Google Scholar 

  204. Bashami RM, Hameed A, Aslam M et al (2015) The suitability of ZnO film-coated glassy carbon electrode for the sensitive detection of 4-nitrophenol in aqueous medium. Anal Methods 7:1794–1801. https://doi.org/10.1039/C4AY02857K

    Article  CAS  Google Scholar 

  205. Khalilzadeh MA, Karimi-Maleh H, Gupta VK (2015) A nanostructure based electrochemical sensor for square wave voltammetric determination of L-cysteine in the presence of high concentration of folic acid. Electroanalysis 27:1766–1773. https://doi.org/10.1002/elan.201500040

    Article  CAS  Google Scholar 

  206. Pavithra NS, Lingaraju K, Raghu GK, Nagaraju G (2017) Citrus maxima (pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim Acta - Part A Mol Biomol Spectrosc 185:11–19. https://doi.org/10.1016/j.saa.2017.05.032

    Article  CAS  Google Scholar 

  207. Mphuthi NG, Adekunle AS, Ebenso EE (2016) Electrocatalytic oxidation of epinephrine and norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor. Sci Rep 6:1–20. https://doi.org/10.1038/srep26938

    Article  CAS  Google Scholar 

  208. Zong S, Cao Y, Zhou Y, Ju H (2007) Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosens Bioelectron 22:1776–1782. https://doi.org/10.1016/j.bios.2006.08.032

    Article  CAS  PubMed  Google Scholar 

  209. Das M, Dhand C, Sumana G et al (2011) Zirconia grafted carbon nanotubes based biosensor for M. Tuberculosis detection. Appl Phys Lett 99:143702. https://doi.org/10.1063/1.3645618

    Article  CAS  Google Scholar 

  210. Carrière D, Moreau M, Barboux P et al (2004) Modification of the surface properties of porous nanometric zirconia particles by covalent grafting. Langmuir 20:3449–3455. https://doi.org/10.1021/la036249m

    Article  CAS  PubMed  Google Scholar 

  211. Wang Y, Jin J, Yuan C et al (2014) A novel electrochemical sensor based on zirconia/ ordered macroporous polyaniline for ultrasensitive detection of pesticides. Analyst 140:560–566. https://doi.org/10.1039/C4AN00981A

    Article  CAS  Google Scholar 

  212. Schmidt T, Oliveira PW, Mennig M, Schmidt H (2007) Preparation of optical axial GRIN components through migration of charged amorphous ZrO2 nanoparticles inside an organic-inorganic hybrid matrix by electrophoresis. J Non-Cryst Solids 353:2826–2831. https://doi.org/10.1016/j.jnoncrysol.2007.06.004

    Article  CAS  Google Scholar 

  213. Das M, Dhand C, Sumana G et al (2011) Electrophoretic fabrication of chitosan - zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromoleclues 12:540–547

    Article  CAS  Google Scholar 

  214. Batra B, Lata S, Rana JS, Shekhar C (2013) Construction of an amperometric bilirubin biosensor based on covalent immobilization of bilirubin oxidase onto zirconia coated silica nanoparticles / chitosan hybrid film. Biosens Bioelectron 44:64–69. https://doi.org/10.1016/j.bios.2012.12.034

    Article  CAS  PubMed  Google Scholar 

  215. Yang Y, Wang Z, Yang M, Li J (2007) Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes / nano zirconium dioxide / chitosan-modified electrodes. Anal Chim Acta 584:268–274. https://doi.org/10.1016/j.aca.2006.11.055

    Article  CAS  PubMed  Google Scholar 

  216. Meng Z, Zheng J, Li Q (2015) A nitrite electrochemical sensor based on electrodeposition of zirconium dioxide nanoparticles on carbon nanotubes modified electrode. J Iran Chem Soc 12:1053–1060. https://doi.org/10.1007/s13738-014-0565-9

    Article  CAS  Google Scholar 

  217. Yang J, Jiao K, Yang T (2007) A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly ( 2, 6-pyridinedicarboxylic acid ), and its application to detection of the PAT gene fragment. Anal Bioanal Chem 389:913–921. https://doi.org/10.1007/s00216-007-1450-5

    Article  CAS  PubMed  Google Scholar 

  218. Pundir S, Chauhan N, Narang J, Pundir CS (2012) Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode. Anal Biochem 427:26–32. https://doi.org/10.1016/j.ab.2012.04.027

    Article  CAS  PubMed  Google Scholar 

  219. Teymourian H, Salimi A, Firoozi S (2014) One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform. Electrochim Acta 143:196–206. https://doi.org/10.1016/j.electacta.2014.08.007

    Article  CAS  Google Scholar 

  220. Kumar S, Sharma JG, Maji S, Dhar B (2016) Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosens Bioelectron 78:497–504. https://doi.org/10.1016/j.bios.2015.11.084

    Article  CAS  PubMed  Google Scholar 

  221. Vilian ATE, Rajkumar M, Chen S (2014) In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Colloids Surf B Biointerfaces 115:295–301. https://doi.org/10.1016/j.colsurfb.2013.12.014

    Article  CAS  Google Scholar 

  222. Zuo S, Zhang L, Yuan H et al (2009) Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode. Bioelectrochemistry 74:223–226. https://doi.org/10.1016/j.bioelechem.2008.09.004

    Article  CAS  PubMed  Google Scholar 

  223. Xu J, Liu C, Teng Y (2010) Direct electrochemistry and electrocatalysis of hydrogen peroxide using hemoglobin immobilized in hollow zirconium dioxide spheres and sodium alginate films. Microchim Acta 169:181–186. https://doi.org/10.1007/s00604-010-0340-2

    Article  CAS  Google Scholar 

  224. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  225. Solanki PR, Kaushik A, Chavhan PM et al (2009) Nanostructured zirconium oxide based genosensor for Escherichia coli detection. Electrochem Commun 11:2272–2277. https://doi.org/10.1016/j.elecom.2009.10.007

    Article  CAS  Google Scholar 

  226. Rajkumar M, Li Y, Chen S (2013) Electrochemical detection of toxic ractopamine and salbutamol in pig meat and human urine samples by using poly taurine / zirconia nanoparticles modified electrodes. Colloids Surf B Biointerfaces 110:242–247. https://doi.org/10.1016/j.colsurfb.2013.03.038

    Article  CAS  PubMed  Google Scholar 

  227. Heidari H, Habibi E (2016) Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Microchim Acta 183:2259–2266. https://doi.org/10.1007/s00604-016-1862-z

    Article  CAS  Google Scholar 

  228. Dong X, Xu H, Wang X et al (2012) 3D graphene a cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213. https://doi.org/10.1021/nn300097q

    Article  CAS  PubMed  Google Scholar 

  229. Kung C, Lin C, Lai Y et al (2011) Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose. Biosens Bioelectron 27:125–131. https://doi.org/10.1016/j.bios.2011.06.033

    Article  CAS  PubMed  Google Scholar 

  230. Keat K, Yee P, Haur C, Shong W (2013) CoOOH nanosheet electrodes : simple fabrication for sensitive electrochemical sensing of hydrogen peroxide and hydrazine. Biosens Bioelectron 39:255–260. https://doi.org/10.1016/j.bios.2012.07.061

    Article  CAS  Google Scholar 

  231. Salimi A, Mamkhezri H, Hallaj R, Soltanian S (2008) Electrochemical detection of trace amount of arsenic ( III ) at glassy carbon electrode modified with cobalt oxide nanoparticles. Sens Actuators B Chem 129:246–254. https://doi.org/10.1016/j.snb.2007.08.017

    Article  CAS  Google Scholar 

  232. Salimi A, Hallaj R, Mamkhezri H et al (2008) Electrochemical properties and electrocatalytic activity of FAD immobilized onto cobalt oxide nanoparticles : application to nitrite detection. J Electroanal Chem 620:31–38. https://doi.org/10.1016/j.jelechem.2008.03.003

    Article  CAS  Google Scholar 

  233. Jia W, Guo M, Zheng Z et al (2009) Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode : toward H2O2 detection. J Electroanal Chem 625:27–32. https://doi.org/10.1016/j.jelechem.2008.09.020

    Article  CAS  Google Scholar 

  234. Chen S-M, Karuppiah C, Palanisamy S, Veeramani V (2014) A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sens Actuators B Chem 196:450–456. https://doi.org/10.1016/j.snb.2014.02.034

    Article  CAS  Google Scholar 

  235. Shahid MM, Huang NM, Rameshkumar P, Pandikumar A (2015) An electrochemical sensing platform based on reduced graphene oxide-cobalt oxide nanocubes@platinum nanocomposite for nitric oxide detection. J Mater Chem A 3:14458–14468. https://doi.org/10.1039/C5TA02608C

    Article  CAS  Google Scholar 

  236. Saghatforoush AL, Sanati S, Hasanzadeh M (2014) Synthesis, characterization and electrochemical properties of Co3O4 nanostructures by using cobalt hydroxide as a precursor Lotf. Res Chem Intermed 41:4361–4372. https://doi.org/10.1007/s11164-014-1535-7

    Article  CAS  Google Scholar 

  237. Buratti S, Brunetti B, Mannino S (2008) Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta 76:454–457. https://doi.org/10.1016/j.talanta.2008.03.031

    Article  CAS  PubMed  Google Scholar 

  238. Toan T, Nguyen VH, Kumar R (2016) Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications. Solid State Sci 53:71–77. https://doi.org/10.1016/j.solidstatesciences.2016.01.006

    Article  CAS  Google Scholar 

  239. Chekin F, Vahdat SM, Asadi MJ (2016) Green synthesis and characterization of cobalt oxide nanoparticles and its electrocatalytic behavior. Russ J Appl Chem 89:816–822. https://doi.org/10.1134/S1070427216050219

    Article  CAS  Google Scholar 

  240. Salimi A, Hallaj R, Soltanian S (2007) Immobilization of hemoglobin on electrodeposited cobalt-oxide nanoparticles : direct voltammetry and electrocatalytic activity. Biophys Chem 130:122–131. https://doi.org/10.1016/j.bpc.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  241. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594:24–31. https://doi.org/10.1016/j.aca.2007.05.010

    Article  CAS  PubMed  Google Scholar 

  242. Taylor P, Sattarahmady N (2012) A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. J Exp Nanosci 7:37–41

    Google Scholar 

  243. Razmi H, Habibi E (2010) Amperometric detection of acetaminophen by an electrochemical sensor based on cobalt oxide nanoparticles in a flow injection system. Electrochim Acta 55:8731–8737. https://doi.org/10.1016/j.electacta.2010.07.081

    Article  CAS  Google Scholar 

  244. Li S, Du J, Zhang J (2014) A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Microchim Acta 181:631–638. https://doi.org/10.1007/s00604-014-1164-2

    Article  CAS  Google Scholar 

  245. Li S, Du J, Chen J, Mao N (2014) Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide : a two-dimensional hybrid for enzyme-free glucose sensing. J Solid State Electrochem 18:1049–1056. https://doi.org/10.1007/s10008-013-2354-2

    Article  CAS  Google Scholar 

  246. Haldorai Y, Choe SR, Huh YS, Han Y (2018) A composite consisting of microporous carbon and cobalt (III) oxide and prepared from zeolitic imidazolate framework-67 for voltammetric determination of ascorbic acid. 2:2–11

  247. Yang J, Zhang W, Gunasekaran S (2011) A low-potential, H2O2 -assisted electrodeposition of cobalt oxide/hydroxide nanostructures onto vertically-aligned multi-walled carbon nanotube arrays for glucose sensing. Electrochim Acta 56:5538–5544. https://doi.org/10.1016/j.electacta.2011.03.087

    Article  CAS  Google Scholar 

  248. Zhang X, Yu S, He W et al (2014) Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid. Biosens Bioelectron 55:446–451. https://doi.org/10.1016/j.bios.2013.12.046

    Article  CAS  PubMed  Google Scholar 

  249. Wu Z, Zhu Y, Ji X (2014) NiCo2O4 -based materials for electrochemical supercapacitors. J Mater Chem A 2:14759–14772. https://doi.org/10.1039/C4TA02390K

    Article  CAS  Google Scholar 

  250. Yang L, Hu Y, Wang Q et al (2016) Ionic liquid-assisted electrochemical determination of pyrimethanil using reduced graphene oxide conjugated to flower-like NiCo2O4. Anal Chim Acta 935:104–112. https://doi.org/10.1016/j.aca.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  251. Qin Z, Cheng Q, Lu Y, Li J (2017) Facile synthesis of hierarchically mesoporous NiCo2O4 nanowires for sensitive nonenzymatic glucose detection. Appl Phys A Mater Sci Process 123:492. https://doi.org/10.1007/s00339-017-1108-x

    Article  CAS  Google Scholar 

  252. Yu XY, Yao XZ, Luo T et al (2014) Facile synthesis of urchin-like NiCo2O4 hollow microspheres with enhanced electrochemical properties in energy and environmentally related applications. ACS Appl Mater Interfaces 6:3689–3695. https://doi.org/10.1021/am4060707

    Article  CAS  PubMed  Google Scholar 

  253. Cui S, Zhang J, Ding Y et al (2017) Rectangular flake-like mesoporous NiCo2O4 as enzyme mimic for glucose biosensing and biofuel cell. Sci China Mater 60:766–776. https://doi.org/10.1007/s40843-017-9072-9

    Article  Google Scholar 

  254. Naik KK, Gangan A, Chakraborty B, Rout CS (2018) Superior non-enzymatic glucose sensing properties of Ag-/Au-NiCo2O4 nanosheets with insight from electronic structure simulations. Analyst 143:571–579. https://doi.org/10.1039/C7AN01354J

    Article  CAS  PubMed  Google Scholar 

  255. Naik KK, Kumar S, Rout CS (2015) Electrodeposited spinel NiCo2O4 nanosheet arrays for glucose sensing application. RSC Adv 5:74585–74591. https://doi.org/10.1039/C5RA13833G

    Article  CAS  Google Scholar 

  256. Hussain M, Ibupoto ZH, Abbasi MA et al (2014) Synthesis of three dimensional nickel cobalt oxide nanoneedles on nickel foam, their characterization and glucose sensing application. Sensors (Switzerland) 14:5415–5425. https://doi.org/10.3390/s140305415

    Article  CAS  Google Scholar 

  257. Saraf M, Natarajan K, Mobin SM (2017) Multifunctional porous NiCo2O4 nanorods: sensitive enzymeless glucose detection and supercapacitor properties with impedance spectroscopic investigations. New J Chem 41:9299–9313. https://doi.org/10.1039/C7NJ01519D

    Article  CAS  Google Scholar 

  258. Yin H, Zhan T, Qin D et al (2017) Self-assembly of dandelion-like NiCo2O4 hierarchical microspheres for non-enzymatic glucose sensor. Inorg Nano-Metal Chem 47:1560–1567. https://doi.org/10.1080/24701556.2017.1357610

    Article  CAS  Google Scholar 

  259. Wang B, Cao Y, Chen Y et al (2017) Rapid synthesis of rGO conjugated hierarchical NiCo2O4 hollow mesoporous nanospheres with enhanced glucose sensitivity. Nanotechnology 28:025501. https://doi.org/10.1088/0957-4484/28/2/025501

    Article  CAS  PubMed  Google Scholar 

  260. Tadayon F, Sepehri Z (2015) A new electrochemical sensor based on a nitrogen-doped graphene/CuCo2O4 nanocomposite for simultaneous determination of dopamine, melatonin and tryptophan. RSC Adv 5:65560–65568. https://doi.org/10.1039/C5RA12020A

    Article  CAS  Google Scholar 

  261. Naik KK, Rout CS (2015) Electrodeposition of ZnCo2O4 nanoparticles for biosensing applications. RSC Adv 5:79397–79404. https://doi.org/10.1039/C5RA11011D

    Article  CAS  Google Scholar 

  262. Velmurugan M, Chen S-M (2017) Synthesis and characterization of porous MnCo2O4 for electrochemical determination of cadmium ions in water samples. Sci Rep 7:653. https://doi.org/10.1038/s41598-017-00748-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Naik KK, Gangan A, Chakraborty B et al (2017) Enhanced nonenzymatic glucose-sensing properties of electrodeposited NiCo2O4-Pd nanosheets: experimental and DFT investigations. ACS Appl Mater Interfaces 9:23894–23903. https://doi.org/10.1021/acsami.7b02217

    Article  CAS  PubMed  Google Scholar 

  264. Rao H, Zhang Z, Ge H et al (2017) Enhanced amperometric sensing using a NiCo2O4 /nitrogen-doped reduced graphene oxide/ionic liquid ternary composite for enzyme-free detection of glucose. New J Chem 41:3667–3676. https://doi.org/10.1039/C7NJ00077D

    Article  CAS  Google Scholar 

  265. Yao S (2018) Hierarchical porous NiCo2O4 array grown on Ni foam for the simultaneous edlectrochemical detection of copper(II) and mercury(II). Int J Electrochem Sci 13:542–550. https://doi.org/10.20964/2018.01.57

    Article  CAS  Google Scholar 

  266. Gong L, Yan H, Dai H et al (2016) Highly sensitive and stabilized sensing of 6-benzylaminopurine based on NiCo2O4 nanosuperstructures. RSC Adv 6:4758–4763. https://doi.org/10.1039/C5RA23343G

    Article  CAS  Google Scholar 

  267. Samanta S, Srivastava R (2016) CuCo2O4 based economical electrochemical sensor for the nanomolar detection of hydrazine and metol. J Electroanal Chem 777:48–57. https://doi.org/10.1016/j.jelechem.2016.07.024

    Article  CAS  Google Scholar 

  268. Zeng G, Li W, Ci S et al (2016) Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Nat Publ Gr:1–8. https://doi.org/10.1038/srep36454

  269. Roushani M, Abdi Z (2013) Hydrogen peroxide sensor based on riboflavin immobilized at the nickel oxide nanoparticle-modified glassy carbon electrode. J Appl Electrochem 43:1175–1183. https://doi.org/10.1007/s10800-013-0603-9

    Article  CAS  Google Scholar 

  270. Zeybek K (2013) Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. J Appl Electrochem 43:523–531. https://doi.org/10.1007/s10800-013-0536-3

    Article  CAS  Google Scholar 

  271. Guo C, Wang Y, Zhao Y, Xu C (2013) Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal Methods 5:1644–1647. https://doi.org/10.1039/c3ay00067b

    Article  CAS  Google Scholar 

  272. Wang L, Han B, Dai L et al (2013) A La10Si5NbO27.5 based electrochemical sensor using nano-structured NiO sensing electrode for detection of NO2. Mater Lett 109:16–19. https://doi.org/10.1016/j.matlet.2013.07.032

    Article  CAS  Google Scholar 

  273. Khairy M, El-safty SA (2014) Nanosized rambutan-like nickel oxides as electrochemical sensor and pseudocapacitor. Sens Actuators B Chem 193:644–652. https://doi.org/10.1016/j.snb.2013.11.113

    Article  CAS  Google Scholar 

  274. Shari E, Salimi A, Shams E et al (2014) Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode : fabrication of highly sensitive enzymeless glucose sensor. Biosens Bioelectron 56:313–319. https://doi.org/10.1016/j.bios.2014.01.010

    Article  CAS  Google Scholar 

  275. Sheng Q, Zheng J, Chen J (2015) Dispersed gvold nanoparticles on NiO coated with polypyrrole for non-enzymic amperometric sensing of glucose. RSC Adv 5:105372–105378. https://doi.org/10.1039/C5RA20715K

    Article  CAS  Google Scholar 

  276. Li M, Bo X, Mu Z et al (2014) Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor. Sens Actuators B Chem 192:261–268. https://doi.org/10.1016/j.snb.2013.10.140

    Article  CAS  Google Scholar 

  277. Deroco PB, Vicentini C, Fatibello-filho O (2015) An electrochemical sensor for the simultaneous determination of paracetamol and codeine using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon black. Electroanalysis 27:2214–2220. https://doi.org/10.1002/elan.201500156

    Article  CAS  Google Scholar 

  278. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2006) Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles. Electrochem Commun 8:1499–1508. https://doi.org/10.1016/j.elecom.2006.06.017

    Article  CAS  Google Scholar 

  279. Sharifi E, Salimi A, Shams E (2013) Electrocatalytic activity of nickel oxide nanoparticles as mediatorless system for NADH and ethanol sensing at physiological pH solution. Biosens Bioelectron 45:260–266. https://doi.org/10.1016/j.bios.2013.01.055

    Article  CAS  PubMed  Google Scholar 

  280. Karimi-maleh H, Moazampour M (2014) Electrocatalytic determination of captopril in real samples using NiO electrode (9,10-dihydro-9,10-ethanoanthracene-11,12- dicarboximido)-4-ethylbenzene-1,2-diol carbon paste electrode. Sens Actuators B Chem 199:47–53. https://doi.org/10.1016/j.snb.2014.03.050

    Article  CAS  Google Scholar 

  281. Fouladgar M, Karimi-maleh H, Kumar V (2015) Highly sensitive voltammetric sensor based on NiO nanoparticle room temperature ionic liquid modified carbon paste electrode for levodopa analysis. J Mol Liq 208:78–83. https://doi.org/10.1016/j.molliq.2015.04.023

    Article  CAS  Google Scholar 

  282. Zhang Y, Lei W, Wu Q, Xia X, Hao Q (2017) Amperometric nonenzymatic determination of glucose via a glassy carbon electrode modified with nickel hydroxide and N-doped reduced graphene oxide. Microchim Acta 184:3103–3111. https://doi.org/10.1007/s00604-017-2332-y

    Article  CAS  Google Scholar 

  283. Rao D, Sheng Q, Zheng J (2016) An electrochemical sensor based on Ni(II) complex and multi wall carbon nano tubes platform for determination of glucose in real samples. J Chem Sci 128:1367–1375. https://doi.org/10.1007/s12039-016-1146-5

    Article  CAS  Google Scholar 

  284. Mahmoudian MR, Basirun WJ, Woi PM et al (2016) Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection. Mater Sci Eng C 59:500–508. https://doi.org/10.1016/j.msec.2015.10.055

    Article  CAS  Google Scholar 

  285. Cheng H, Wang M, Tang Y et al (2016) Fabrication of NiOOH/Ni(OH)2@C electrode for detecting blood glucose by composited plating method. Int J Electrochem Sci 11:6085–6094. https://doi.org/10.20964/2016.07.24

    Article  CAS  Google Scholar 

  286. Rezaeinasab M, Benvidi A, Tezerjani MD, Jahanbani S, Kianfar AH, Sedighipoor M (2017) An electrochemical sensor based on Ni(II) complex and multi wall carbon nano tubes platform for determination of glucose in real samples. Electroanalysis 29:423–432. https://doi.org/10.1002/elan.201600162

    Article  CAS  Google Scholar 

  287. Akhtar N, El-Safty S, Khairy M (2014) Simple and sensitive electrochemical sensor-based three-dimensional porous Ni-hemoglobin composite electrode. Chemosensors 2:235–250. https://doi.org/10.3390/chemosensors2040235

    Article  Google Scholar 

  288. Li H, Hao W, Hu J, Wu H (2013) A photoelectrochemical sensor based on nickel hydroxyl-oxide modified n-silicon electrode for hydrogen peroxide detection in an alkaline solution. Biosens Bioelectron 47:225–230. https://doi.org/10.1016/j.bios.2013.03.028

    Article  CAS  PubMed  Google Scholar 

  289. Tovide O, Jaheed N, Mohamed N et al (2014) Graphenated polyaniline-doped tungsten oxide nanocomposite sensor for real time determination of phenanthrene. Electrochim Acta 128:138–148. https://doi.org/10.1016/j.electacta.2013.12.134

    Article  CAS  Google Scholar 

  290. Hariharan V, Parthibavarman M, Sekar C (2011) Synthesis of tungsten oxide (W18O49) nanosheets utilizing EDTA salt by microwave irradiation method. J Alloys Compd 509:4788–4792. https://doi.org/10.1016/j.jallcom.2011.01.159

    Article  CAS  Google Scholar 

  291. Hariharan V, Radhakrishnan S, Parthibavarman M, Dhilipkumar R, Sekar C (2011) Synthesis of polyethylene glycol (PEG) assisted tungsten oxide (WO3) nanoparticles for l-dopa bio-sensing applications. Talanta 85:2166–2174. https://doi.org/10.1016/j.talanta.2011.07.063

    Article  CAS  PubMed  Google Scholar 

  292. Nimittrakoolchai OU, Supothina S (2008) High-yield precipitation synthesis of tungsten oxide platelet particle and its ethylene gas-sensing characteristic. Mater Chem Phys 112:270–274. https://doi.org/10.1016/j.matchemphys.2008.05.049

    Article  CAS  Google Scholar 

  293. Shukla S, Umar A, Chaudhary S et al (2016) Bare and cationic surfactants capped tungsten trioxide nanoparticles based hydrazine chemical sensors: a comparative study. Sens Actuators B Chem 230:571–580. https://doi.org/10.1016/j.snb.2016.02.090

    Article  CAS  Google Scholar 

  294. Bertus LM, Faure C, Danine A et al (2013) Synthesis and characterization of WO3 thin films by surfactant assisted spray pyrolysis for electrochromic applications. Mater Chem Phys 140:49–59. https://doi.org/10.1016/j.matchemphys.2013.02.047

    Article  CAS  Google Scholar 

  295. Anithaa AC, Lavanya N, Asokan K, Sekar C (2015) WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim Acta 167:294–302. https://doi.org/10.1016/j.electacta.2015.03.160

    Article  CAS  Google Scholar 

  296. Anithaa AC, Asokan K, Sekar C (2017) Voltammetric determination of epinephrine and xanthine based on sodium dodecyl sulphate assisted tungsten trioxide nanoparticles. Electrochim Acta 237:44–53. https://doi.org/10.1016/j.electacta.2017.03.098

    Article  CAS  Google Scholar 

  297. Baytak AK, Duzmen S, Teker T, Aslanoglu M (2015) A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol. Mater Sci Eng C 57:164–170. https://doi.org/10.1016/j.msec.2015.07.060

    Article  CAS  Google Scholar 

  298. Pandey PC, Prakash A, Pandey AK (2014) Studies on electrochemical and peroxidase mimetic behavior of Prussian blue nanoparticles in presence of Pd-WO3-SiO2 nanocomposite; bioelectro-catalytic sensing of H2O2. Electrochim Acta 127:132–138. https://doi.org/10.1016/j.electacta.2014.02.022

    Article  CAS  Google Scholar 

  299. Sandil D, Kumar S, Arora K et al (2017) Biofunctionalized nanostructured tungsten trioxide based sensor for cardiac biomarker detection. Mater Lett 186:202–205. https://doi.org/10.1016/j.matlet.2016.09.107

    Article  CAS  Google Scholar 

  300. Shukla S, Chaudhary S, Umar A et al (2015) Dodecyl ethyl dimethyl ammonium bromide capped WO3 nanoparticles: efficient scaffolds for chemical sensing and environmental remediation. Dalt Trans 44:17251–17260. https://doi.org/10.1039/C5DT02853A

    Article  CAS  Google Scholar 

  301. Zhuo SJ, Shao MW, Zhou Q, Liao F (2011) Preparation, characterization, and electrochemical properties of lithium vanadium oxide nanoribbons. Electrochim Acta 56:6453–6458. https://doi.org/10.1016/j.electacta.2011.04.132

    Article  CAS  Google Scholar 

  302. Suresh R, Giribabu K, Manigandan R et al (2014) New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level. Sens Actuators B Chem 202:440–447. https://doi.org/10.1016/j.snb.2014.05.095

    Article  CAS  Google Scholar 

  303. Li H, Zhu M, Chen W, Wang K (2017) Ternary heterojunctions composed of BiOCl, BiVO4 and nitrogen-doped carbon quantum dots for use in photoelectrochemical sensing: effective charge separation and application to ultrasensitive sensing of dopamine. Microchim Acta 184:4827–4833. https://doi.org/10.1007/s00604-017-2529-0

    Article  CAS  Google Scholar 

  304. Pei L, Pei Y, Xie Y et al (2012) Formation process of calcium vanadate nanorods and their electrochemical sensing properties. J Mater Res 27:2391–2400. https://doi.org/10.1557/jmr.2012.254

    Article  CAS  Google Scholar 

  305. Shen S, Zhang Y (2016) Heavy metal analysis in tai lake water sample based on vanadium oxide-polypropylene carbonate modified electrode. Int J Electrochem Sci 11:5669–5678. https://doi.org/10.20964/2016.07.49

    Article  CAS  Google Scholar 

  306. Rajesh K, Santhanalakshmi J (2017) Design and development of graphene intercalated V2O5 nanosheets based electrochemical sensors for effective determination of potentially hazardous 3,5–Dichlorophenol. Mater Chem Phys 199:497–507. https://doi.org/10.1016/j.matchemphys.2017.07.022

    Article  CAS  Google Scholar 

  307. Sheikhshoaie M, Sheikhshoaie I, Ranjbar M (2017) Analysis of kojic acid in food samples uses an amplified electrochemical sensor employing V2O5 nanoparticle and room temperature ionic liquid. J Mol Liq 231:597–601. https://doi.org/10.1016/j.molliq.2017.02.039

    Article  CAS  Google Scholar 

  308. Pei LZ, Pei YQ, Xie YK et al (2013) Formation mechanism of manganese vanadate microtubes and their electrochemical sensing properties. Int J Mater Res 104:1267–1273. https://doi.org/10.3139/146.110978

    Article  CAS  Google Scholar 

  309. Rahman MM, Khan SB, Asiri AM, Al-Sehemi AG (2013) Chemical sensor development based on polycrystalline gold electrode embedded low-dimensional Ag2O nanoparticles. Electrochim Acta 112:422–430. https://doi.org/10.1016/j.electacta.2013.08.164

    Article  CAS  Google Scholar 

  310. Wang Y, Huang B, Dai W et al (2016) Sensitive determination of capsaicin on Ag/Ag2O nanoparticles/reduced graphene oxide modified screen-printed electrode. J Electroanal Chem 776:93–100. https://doi.org/10.1016/j.jelechem.2016.06.031

    Article  CAS  Google Scholar 

  311. Rahman MM, Balkhoyor HB, Asiri AM, Marwani HM (2016) A gold electrode modified with silver oxide nanoparticle decorated carbon nanotubes for electrochemical sensing of dissolved ammonia. Microchim Acta 183:1677–1685. https://doi.org/10.1007/s00604-016-1797-4

    Article  CAS  Google Scholar 

  312. Rahman MM, Khan SB, Asiri AM et al (2013) Detection of nebivolol drug based on as-grown un-doped silver oxide nanoparticles prepared by a wet-chemical method. Int J Electrochem Sci 8:323–335

    CAS  Google Scholar 

  313. Fang B, Gu A, Wang G et al (2009) Silver oxide nanowalls grown on Cu substrate as an enzymeless glucose sensor. ACS Appl Mater Interfaces 1:2829–2834. https://doi.org/10.1021/am900576z

    Article  CAS  PubMed  Google Scholar 

  314. Liu L, Ma Z, Zhu X et al (2016) A glassy carbon electrode modified with carbon nano-fragments and bismuth oxide for electrochemical analysis of trace catechol in the presence of high concentrations of hydroquinone. Microchim Acta 183:3293–3301. https://doi.org/10.1007/s00604-016-1973-6

    Article  CAS  Google Scholar 

  315. Yao Z, Yang X, Wu F et al (2016) Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchim Acta 183:2799–2806. https://doi.org/10.1007/s00604-016-1924-2

    Article  CAS  Google Scholar 

  316. Yang S, Li G, Wang Y et al (2016) Amperometric L-cysteine sensor based on a carbon paste electrode modified with Y2O3 nanoparticles supported on nitrogen-doped reduced graphene oxide. Microchim Acta 183:1351–1357. https://doi.org/10.1007/s00604-015-1737-8

    Article  CAS  Google Scholar 

  317. Zhou K, Fan H, Gu C, Liu B (2016) Simultaneous determination of formaldehyde and hydrogen sulfide in air using the cataluminescence of nanosized Zn3SnLa2O8. Microchim Acta 183:1063–1068. https://doi.org/10.1007/s00604-015-1732-0

    Article  CAS  Google Scholar 

  318. Yu Z, Lv S, Ren R et al (2017) Photoelectrochemical sensing of hydrogen peroxide at zero working potential using a fluorine-doped tin oxide electrode modified with BiVO4 microrods. Microchim Acta 184:799–806. https://doi.org/10.1007/s00604-016-2071-5

    Article  CAS  Google Scholar 

  319. Kim IY, Seo J, Oh SM et al (2015) In situ formation of conductive metal sulfide domain in metal oxide matrix: an efficient way to improve the electrochemical activity of semiconducting metal oxide. Adv Funct Mater 25:4948–4955. https://doi.org/10.1002/adfm.201501478

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beena Mathew.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, J.M., Antony, A. & Mathew, B. Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185, 358 (2018). https://doi.org/10.1007/s00604-018-2894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2894-3

Keywords

Navigation