Skip to main content
Log in

Ionic liquid inspired alkalinochromic salts based on Reichardt’s dyes for the solution phase and vapochromic detection of amines

  • Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chromogenic salts based on the negatively solvatochromic pyridinium N-phenolate betaines 2,6-diphenyl-4-(2,4,6-triphenyl-N-pyridino)-phenolate (Reichardt’s dye 30) and 2,6-dichloro-4-(2,4,6-triphenyl-N-pyridino)-phenolate (Reichardt’s dye 33) proved to be promising probes for the colorimetric detection of bases, including hydroxide ion, ammonia, and aliphatic amines. Specifically, the protonated halide forms of these two dyes were ion exchanged to generate lipophilic bis(trifluoromethylsulfonyl)imide derivatives, denoted [ET(30)][Tf2N] and [ET(33)][Tf2N], respectively. When dissolved in 95 vol% EtOH, these essentially colorless solutions displayed dramatic “alkalinochromic” color-on switching due to phenolic deprotonation to generate the zwitterionic form of the dyes with their characteristic charge-transfer absorption. The extent of the colorimetric response varied with the base strength for the aliphatic amines tested (i.e., propylamine, ethanolamine, ethylenediamine, diethylenetriamine, triethylamine, triethanolamine), being loosely correlated with the pKb of the amine. In addition, we demonstrated proof of concept for the vapochromic detection of ammonia and aliphatic amines by dissolution of the chromogenic probes in the ionic liquid 1-propyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. We also showed that the dyed ionic liquid can be successfully immobilized within silica sol-gel ionogels to generate more practical and robust sensory platforms. This strategy represents a useful addition to existing colorimetric sensor arrays targeting amines and other basic species. In particular, the differential response of the two different probes offers a measure of chemical selectivity which will be of interest for detecting biogenic amines in food safety applications, among other areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Gong W-L, Sears KJ, Alleman JE, Blatchley ER. Toxicity of model aliphatic amines and their chlorinated forms. Environ Toxicol Chem. 2004;23:239–44.

    Article  CAS  PubMed  Google Scholar 

  2. Bang JH, Lim SH, Park E, Suslick KS. Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines. Langmuir. 2008;24:13168–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rakow NA, Sen A, Janzen MC, Ponder JB, Suslick KS. Molecular recognition and discrimination of amines with a colorimetric array. Angew Chem Int Ed. 2005;44:4528–32.

    Article  CAS  Google Scholar 

  4. Jane H, Ralph PT. Optical gas sensing: a review. Meas Sci Technol. 2013;24:012004.

    Article  CAS  Google Scholar 

  5. Siraj N, El-Zahab B, Hamdan S, Karam TE, Haber LH, Li M, et al. Fluorescence, phosphorescence, and chemiluminescence. Anal Chem. 2016;88:170–202.

    Article  CAS  PubMed  Google Scholar 

  6. Tao S, Xu L, Fanguy JC. Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers. Sensors Actuators B Chem. 2006;115:158–63.

    Article  CAS  Google Scholar 

  7. Oberg KI, Hodyss R, Beauchamp JL. Simple optical sensor for amine vapors based on dyed silica microspheres. Sensors Actuators B Chem. 2006;115:79–85.

    Article  CAS  Google Scholar 

  8. Waich K, Mayr T, Klimant I. Fluorescence sensors for trace monitoring of dissolved ammonia. Talanta. 2008;77:66–72.

    Article  CAS  PubMed  Google Scholar 

  9. Preininger C, Mohr GJ, Klimant I, Wolfbeis OS. Ammonia fluorosensors based on reversible lactonization of polymer-entrapped rhodamine dyes, and the effects of plasticizers. Anal Chim Acta. 1996;334:113–23.

    Article  CAS  Google Scholar 

  10. Courbat J, Briand D, Damon-Lacoste J, Wöllenstein J, de Rooij NF. Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides. Sensors Actuators B Chem. 2009;143:62–70.

    Article  CAS  Google Scholar 

  11. Wöllenstein J, Peter C, Schiel M, Schmitt K. Colorimetric gas sensors for the detection of ammonia, nitrogen dioxide and carbon monoxide: current status and research trends. SENSOR + TEST Conferences - SENSOR Proceedings. 2011;D3 - Gas Sensors I:562–7.

  12. Galpothdeniya WIS, Regmi BP, McCarter KS, de Rooy SL, Siraj N, Warner IM. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination. Anal Chem. 2015;87:4464–71.

    Article  CAS  PubMed  Google Scholar 

  13. Galpothdeniya WIS, McCarter KS, De Rooy SL, Regmi BP, Das S, Hasan F, et al. Ionic liquid-based optoelectronic sensor arrays for chemical detection. RSC Adv. 2014;4:7225–34.

    Article  CAS  Google Scholar 

  14. Zhang Y, Lim L-T. Colorimetric array indicator for NH3 and CO2 detection. Sensors Actuators B Chem. 2018;255:3216–26.

    Article  CAS  Google Scholar 

  15. Machado VG, Stock RI, Reichardt C. Pyridinium N-phenolate betaine dyes. Chem Rev. 2014;114:10429–75.

    Article  CAS  PubMed  Google Scholar 

  16. Reichardt C. Solvatochromic dyes as solvent polarity indicators. Chem Rev. 1994;94:2319–58.

    Article  CAS  Google Scholar 

  17. Sarkar A, Ali M, Baker GA, Tetin SY, Ruan Q, Pandey S. Multiprobe spectroscopic investigation of molecular-level behavior within aqueous 1-butyl-3-methylimidazolium tetrafluoroborate. J Phys Chem B. 2009;113:3088–98.

    Article  CAS  PubMed  Google Scholar 

  18. Pandey S, Baker SN, Pandey S, Baker GA. Optically responsive switchable ionic liquid for internally-referenced fluorescence monitoring and visual determination of carbon dioxide. Chem Commun. 2012;48:7043–5.

    Article  CAS  Google Scholar 

  19. Baker SN, Baker GA, Bright FV. Temperature-dependent microscopic solvent properties of ‘dry’ and ‘wet’ 1-butyl-3-methylimidazolium hexafluorophosphate: correlation with (30) and Kamlet-Taft polarity scales. Green Chem. 2002;4:165–9.

    Article  CAS  Google Scholar 

  20. Ribeiro EA, Sidooski T, Nandi LG, Machado VG. Interaction of protonated merocyanine dyes with amines in organic solvents. Spectrochim Acta A. 2011;81:745–53.

    Article  CAS  Google Scholar 

  21. Onida B, Fiorilli S, Borello L, Viscardi G, Macquarrie D, Garrone E. Mechanism of the optical response of mesoporous silica impregnated with Reichardt’s dye to NH3 and other gases. J Phys Chem B. 2004;108:16617–20.

    Article  CAS  Google Scholar 

  22. Sadaoka Y, Sakai Y, Murata Y-U. Optical humidity and ammonia gas sensors using Reichardt’s dye-polymer composites. Talanta. 1992;39:1675–9.

    Article  CAS  PubMed  Google Scholar 

  23. Fiorilli S, Onida B, Macquarrie D, Garrone E. Mesoporous SBA-15 silica impregnated with Reichardt’s dye: a material optically responding to NH3. Sensors Actuators B Chem. 2004;100:103–6.

    Article  CAS  Google Scholar 

  24. Onida B, Borello L, Fiorilli S, Bonelli B, Arean CO, Garrone E. Mesostructured SBA-3 silica containing Reichardt’s dye as an optical ammonia sensor. Chem Commun 2004:2496–7. https://doi.org/10.1039/B409779C.

  25. Fiorilli S, Onida B, Barolo C, Viscardi G, Brunel D, Garrone E. Tethering of modified Reichardt’s dye on SBA-15 mesoporous silica: the effect of the linker flexibility. Langmuir. 2007;23:2261–8.

    Article  CAS  PubMed  Google Scholar 

  26. Xie Z-L, Huang X, Taubert A. DyeIonogels: proton-responsive ionogels based on a dye-ionic liquid exhibiting reversible color change. Adv Funct Mater. 2014;24:2837–43.

    Article  CAS  Google Scholar 

  27. Yung KY, Schadock-Hewitt AJ, Hunter NP, Bright FV, Baker GA. ‘Liquid litmus’: chemosensory pH-responsive photonic ionic liquids. Chem Commun. 2011;47:4775–7.

    Article  CAS  Google Scholar 

  28. Burrell AK, Sesto RED, Baker SN, McCleskey TM, Baker GA. The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem. 2007;9:449–54.

    Article  CAS  Google Scholar 

  29. Paley MS, McGill RA, Howard SC, Wallace SE, Harris JM. Solvatochromism: a new method for polymer characterization. Macromolecules. 1990;23:4557–64.

    Article  CAS  Google Scholar 

  30. Vapor pressures were sourced from section 9 (“Physical and Chemical Properties”) of each chemical’s safety data sheet (SDS) provided on Sigma-Aldrich’s website. Available from: https://www.sigmaaldrich.com.

  31. Trivedi S, Pandey S, Baker SN, Baker GA, Pandey S. Pronounced hydrogen bonding giving rise to apparent probe Hyperpolarity in ionic liquid mixtures with 2,2,2-trifluoroethanol. J Phys Chem B. 2012;116:1360–9.

    Article  CAS  PubMed  Google Scholar 

  32. Sarkar A, Trivedi S, Baker GA, Pandey S. Multiprobe spectroscopic evidence for “hyperpolarity” within 1-butyl-3-methylimidazolium hexafluorophosphate mixtures with tetraethylene glycol. J Phys Chem B. 2008;112:14927–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G. Baker acknowledges support for this research from the Research Corporation for Science Advancement. The authors thank Dr. Sudhir Ravula for helpful feedback and thoughtful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Baker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Published in the topical collection Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry with guest editors Jared L. Anderson and Kevin D. Clark.

Electronic supplementary material

ESM 1

(PDF 2451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essner, J.B., Baker, G.A. Ionic liquid inspired alkalinochromic salts based on Reichardt’s dyes for the solution phase and vapochromic detection of amines. Anal Bioanal Chem 410, 4607–4613 (2018). https://doi.org/10.1007/s00216-018-1177-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1177-5

Keywords

Navigation