Skip to main content
Log in

Tuning the structures of two-dimensional cuprous oxide confined on Au(111)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) cuprous oxide (Cu2O) nanostructures (NSs) of monolayer thickness were synthesized on Au(111) and characterized using atomic-resolution scanning tunneling microscopy, X-ray photoelectron spectroscopy, and density functional theory (DFT) calculations. The surface and edge structures of 2D Cu2O were resolved at the atomic level and found to exhibit a graphene-like lattice structure. Cu2O NSs grew preferentially at the face centered cubic (fcc) domains of Au(111). Depending on the annealing temperature, the shapes and structures of Cu2O NSs were found to vary from elongated islands with a defective hexagonal lattice (mostly topological 5–7 defects) to triangular NSs with an almost-perfect hexagonal lattice. The edge structures of Cu2O NSs also varied with the annealing temperature, from predominantly the arm-chair 56 structure at 400 K to almost exclusively the zig-zag structure at 600 K. DFT calculations suggested that the herringbone ridges of Au(111) confined the growth and structure of Cu2O NSs on Au(111). As such, the arm-chair edges of Cu2O NSs, which are less stable than the zig-zag edges, could be exposed preferentially at 400 K. Cu2O NSs developed into the thermodynamically-favored triangular form and exposed zig-zag edges at 600 K, when the Au(111) substrate became mobile. The confined growth of 2D cuprous oxide on Au(111) demonstrated the importance of metal-oxide interactions in tuning the structures of supported 2D oxide NSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing oxide reducibility: The role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 2017, 7, 6493–6513.

    Article  Google Scholar 

  2. Freund, H. J. The surface science of catalysis and more, using ultrathin oxide films as templates: A perspective. J. Am. Chem. Soc. 2016, 138, 8985–8996.

    Article  Google Scholar 

  3. Bersuker, G.; McKenna, K.; Shluger, A. Silica and high-k dielectric thin films in microelectronics. In Oxide Ultrathin Films.Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; pp 101–118.

    Google Scholar 

  4. Lusk, M. T.; Carr, L. D. Nanoengineering defect structures on graphene. Phys. Rev. Lett. 2008, 100, 175503.

    Article  Google Scholar 

  5. Carr, L. D.; Lusk, M. T. Defect engineering: Graphene gets designer defects. Nat. Nanotechnol. 2010, 5, 316–317.

    Article  Google Scholar 

  6. Lahiri, J.; Lin, Y.; Bozkurt, P.; Oleynik, I. I.; Batzill, M. An extended defect in graphene as a metallic wire. Nat. Nanotechnol. 2010, 5, 326–329.

    Article  Google Scholar 

  7. Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505.

    Article  Google Scholar 

  8. Björkman, T.; Kurasch, S.; Lehtinen, O.; Kotakoski, J.; Yazyev, O. V.; Srivastava, A.; Skakalova, V.; Smet, J. H.; Kaiser, U.; Krasheninnikov, A. V. Defects in bilayer silica and graphene: Common trends in diverse hexagonal twodimensional systems. Sci. Rep. 2013, 3, 3482.

    Article  Google Scholar 

  9. Yang, B.; Boscoboinik, J. A.; Yu, X.; Shaikhutdinov, S.; Freund, H. J. Patterned defect structures predicted for graphene are observed on single-layer silica films. Nano Lett. 2013, 13, 4422–4427.

    Article  Google Scholar 

  10. Surnev, S.; Fortunelli, A.; Netzer, F. P. Structure–property relationship and chemical aspects of oxide–metal hybrid nanostructures. Chem. Rev. 2013, 113, 4314–4372.

    Article  Google Scholar 

  11. Cabrera, N.; Mott, N. F. Theory of the oxidation of metals. Rep. Prog. Phys. 1949, 12, 163–184.

    Article  Google Scholar 

  12. Zavabeti, A.; Ou, J. Z.; Carey, B. J.; Syed, N.; Orrell-Trigg, R.; Mayes, E. L. H.; Xu, C. L.; Kavehei, O.; O’Mullane, A. P.; Kaner, R. B. et al. A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science 2017, 358, 332–335.

    Article  Google Scholar 

  13. Liu, Y.; Yang, F.; Zhang, Y.; Xiao, J. P.; Yu, L.; Liu, Q. F.; Ning, Y. X.; Zhou, Z. W.; Chen, H.; Huang, W. G. et al. Enhanced oxidation resistance of active nanostructures via dynamic size effect. Nat. Commun. 2017, 8, 14459.

    Article  Google Scholar 

  14. Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metalsupport interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170–175.

    Article  Google Scholar 

  15. Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121–1125.

    Article  Google Scholar 

  16. Liu, X. Y.; Wang, A. Q.; Li, L.; Zhang, T.; Mou, C. Y.; Lee, J. F. Structural changes of Au–Cu bimetallic catalysts in COoxidation: In situ XRD, EPR, XANES, and FT-IR characterizations. J. Catal. 2011, 278, 288–296.

    Article  Google Scholar 

  17. Bauer, J. C.; Mullins, D.; Li, M. J.; Wu, Z. L.; Payzant, E. A.; Overbury, S. H.; Dai, S. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the COoxidation reaction. Phys. Chem. Chem. Phys. 2011, 13, 2571–2581.

    Article  Google Scholar 

  18. Newsome, D. S. The water-gas shift reaction. Catal. Rev. 1980, 21, 275–318.

    Article  Google Scholar 

  19. Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copperceria- titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

    Article  Google Scholar 

  20. Zhao, G. F.; Yang, F.; Chen, Z. J.; Liu, Q. F.; Ji, Y. J.; Zhang, Y.; Niu, Z. Q.; Mao, J. J.; Bao, X. H.; Hu, P. J. et al. Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun. 2017, 8, 14039.

    Article  Google Scholar 

  21. Kuo, C. H.; Huang, M. H. Morphologically controlled synthesis of Cu2O nanocrystals and their properties. Nano Today 2010, 5, 106–116.

    Article  Google Scholar 

  22. Zhang, R. R.; Hu, L.; Bao, S. X.; Li, R.; Gao, L.; Li, R.; Chen, Q. W. Surface polarization enhancement: High catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for COoxidation. J. Mater. Chem. A 2016, 4, 8412–8420.

    Article  Google Scholar 

  23. Chen, C. S.; Chen, C. C.; Lai, T. W.; Wu, J. H.; Chen, C. H.; Lee, J. F. Water adsorption and dissociation on Cu nanoparticles. J. Phys. Chem. C 2011, 115, 12891–12900.

    Article  Google Scholar 

  24. Favaro, M.; Xiao, H.; Cheng, T.; Goddard, W. A.; Yano, J.; Crumlin, E. J. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl. Acad. Sci. USA 2017, 114, 6706–6711.

    Google Scholar 

  25. Zhu, Q.; Zou, L. F.; Zhou, G. W.; Saidi, W. A.; Yang, J. C. Early and transient stages of Cu oxidation: Atomistic insights from theoretical simulations and in situ experiments. Surf. Sci. 2016, 652, 98–113.

    Article  Google Scholar 

  26. Gattinoni, C.; Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxides. Surf. Sci. Rep. 2015, 70, 424–447.

    Article  Google Scholar 

  27. Liu, Q. Q.; Li, L.; Cai, N.; Saidi, W. A.; Zhou, G. W. Oxygen chemisorption-induced surface phase transitions on Cu(110). Surf. Sci. 2014, 627, 75–84.

    Article  Google Scholar 

  28. Li, L.; Cai, N.; Saidi, W. A.; Zhou, G. W. Role of oxygen in Cu (110) surface restructuring in the vicinity of step edges. Chem. Phys. Lett. 2014, 613, 64–69.

    Article  Google Scholar 

  29. Fujita, K.; Ando, D.; Uchikoshi, M.; Mimura, K.; Isshiki, M. New model for low-temperature oxidation of copper single crystal. Appl. Surf. Sci. 2013, 276, 347–358.

    Article  Google Scholar 

  30. Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Oxygen adsorption and stability of surface oxides on Cu(111): A first-principles investigation. Phys. Rev. B 2006, 73, 165424.

    Article  Google Scholar 

  31. Sträter, H.; Fedderwitz, H.; Groß, B.; Nilius, N. Growth and surface properties of cuprous oxide films on Au(111). J. Phys. Chem. C 2015, 119, 5975–5981.

    Article  Google Scholar 

  32. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  33. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  34. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  35. Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215.

    Article  Google Scholar 

  36. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  37. Meyer, J. A.; Baikie, I. D.; Kopatzki, E.; Behm, R. J. Preferential island nucleation at the elbows of the Au (111) herringbone reconstruction through place exchange. Surf. Sci. 1996, 365, L647–L651.

    Article  Google Scholar 

  38. Zhao, X. Y.; Liu, P.; Hrbek, J.; Rodriguez, J.; Pérez, M. The chemisorption of SO2 on the Cu/Au(111) surface: Interplay between ensemble and electronic effects. Surf. Sci. 2005, 592, 25–36.

    Article  Google Scholar 

  39. Grillo, F.; Früchtl, H.; Francis, S. M.; Richardson, N. V. Site selectivity in the growth of copper islands on Au (111). New J. Phys. 2011, 13, 013044.

    Article  Google Scholar 

  40. Liu, Q. F.; Ning, Y. X.; Huang, W. G.; Fu, Q.; Yang, F.; Bao, X. H. Origin of the thickness-dependent oxidation of ultrathin Cu films on Au(111). J. Phys. Chem. C 2018, 122, 8364–8372.

    Article  Google Scholar 

  41. Yang, F.; Choi, Y.; Liu, P.; Stacchiola, D.; Hrbek, J.; Rodriguez, J. A. Identification of 5–7 defects in a copper oxide surface. J. Am. Chem. Soc. 2011, 133, 11474–11477.

    Article  Google Scholar 

  42. Besenbacher, F.; Nørskov, J. K. Oxygen chemisorption on metal surfaces: General trends for Cu, Ni and Ag. Prog. Surf. Sci. 1993, 44, 5–66.

    Article  Google Scholar 

  43. Möller, C.; Fedderwitz, H.; Noguera, C.; Goniakowski, J.; Nilius, N. Temperature-dependent phase evolution of copper-oxide thin-films on Au(111). Phys. Chem. Chem. Phys. 2018, 20, 5636–5643.

    Article  Google Scholar 

  44. Hashimoto, A.; Suenaga, K.; Gloter, A.; Urita, K.; Iijima, S. Direct evidence for atomic defects in graphene layers. Nature 2004, 430, 870–873.

    Article  Google Scholar 

  45. Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie, M. F.; Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586.

    Article  Google Scholar 

  46. Wöll, C.; Chiang, S.; Wilson, R. J.; Lippel, P. H. Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 1989, 39, 7988–7991.

    Article  Google Scholar 

  47. Voigtländer, B.; Meyer, G.; Amer, N. M. Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy. Phys. Rev. B 1991, 44, 10354–10357.

    Article  Google Scholar 

  48. Barth, J. V.; Brune, H.; Ertl, G.; Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B 1990, 42, 9307–9318.

    Article  Google Scholar 

  49. Koskinen, P.; Malola, S.; Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.

    Article  Google Scholar 

  50. Koskinen, P.; Malola, S.; Häkkinen, H. Evidence for graphene edges beyond zigzag and armchair. Phys. Rev. B 2009, 80, 073401.

    Article  Google Scholar 

  51. Nilius, N.; Kozlov, S. M.; Jerratsch, J. F.; Baron, M.; Shao, X.; Viñes, F.; Shaikhutdinov, S.; Neyman, K. M.; Freund, H. J. Formation of one-dimensional electronic states along the step edges of CeO2(111). ACS Nano 2012, 6, 1126–1133.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of China (Nos. 2017YFB0602205 and 2016YFA0202803), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200), the National Natural Science Foundation of China (Nos. 21473191, 91545204, 11574040 and 11504040), the Thousand Talents Program for Young Scientists and the Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jijun Zhao, Fan Yang or Xinhe Bao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Han, N., Zhang, S. et al. Tuning the structures of two-dimensional cuprous oxide confined on Au(111). Nano Res. 11, 5957–5967 (2018). https://doi.org/10.1007/s12274-018-2109-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2109-6

Keywords

Navigation