1932

Abstract

Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each cell division cycle. However, the idea that replication forks would form at origins of DNA replication and proceed without impairment to copy the chromosomes has proven naive. It is now clear that replication forks stall frequently as a result of encounters between the replication machinery and template damage, slow-moving or paused transcription complexes, unrelieved positive superhelical tension, covalent protein–DNA complexes, and as a result of cellular stress responses. These stalled forks are a major source of genome instability. The cell has developed many strategies for ensuring that these obstructions to DNA replication do not result in loss of genetic information, including DNA damage tolerance mechanisms such as lesion skipping, whereby the replisome jumps the lesion and continues downstream; template switching both behind template damage and at the stalled fork; and the error-prone pathway of translesion synthesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-011921
2018-06-20
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-011921.html?itemId=/content/journals/10.1146/annurev-biochem-062917-011921&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Aguilera A, García-Muse T 2013. Causes of genome instability. Annu. Rev. Genet. 47:1–32
    [Google Scholar]
  2. 2.  Cha HJ, Yim H 2013. The accumulation of DNA repair defects is the molecular origin of carcinogenesis. Tumor Biol 34:3293–302
    [Google Scholar]
  3. 3.  Macheret M, Halazonetis TD 2015. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. Mech. Dis. 10:425–48
    [Google Scholar]
  4. 4.  Yeeles JT, Poli J, Marians KJ, Pasero P 2013. Rescuing stalled or damaged replication forks. Cold Spring Harb. Perspect. Biol. 5:271–85
    [Google Scholar]
  5. 5.  Branzei D, Szakal B 2017. Building up and breaking down: mechanisms controlling recombination during replication. Crit. Rev. Biochem. Mol. Biol. 52:381–94
    [Google Scholar]
  6. 6.  Michel B, Sandler SJ 2017. Replication restart in bacteria. J. Bacteriol. 199:e00102–17
    [Google Scholar]
  7. 7.  Neelsen KJ, Lopes M 2015. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat. Rev. Mol. Cell Biol. 16:207–20
    [Google Scholar]
  8. 8.  Hedglin M, Benkovic SJ 2017. Eukaryotic translesion DNA synthesis on the leading and lagging strands: unique detours around the same obstacle. Chem. Rev. 117:7857–77
    [Google Scholar]
  9. 9.  Techer H, Koundrioukoff S, Nicolas A, Debatisse M 2017. The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat. Rev. Genet. 18:535–50
    [Google Scholar]
  10. 10.  Yazinski SA, Zou L 2016. Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annu. Rev. Genet. 50:155–73
    [Google Scholar]
  11. 11.  Toledo L, Neelsen KJ, Lukas J 2017. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol. Cell 66:735–49
    [Google Scholar]
  12. 12.  Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A 1968. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. PNAS 59:598–605
    [Google Scholar]
  13. 13.  McHenry CS. 2011. DNA replicases from a bacterial perspective. Annu. Rev. Biochem. 80:403–36
    [Google Scholar]
  14. 14.  Bleichert F, Botchan MR, Berger JM 2017. Mechanisms for initiating cellular DNA replication. Science 355:eaah6317
    [Google Scholar]
  15. 15.  Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O et al. 2015. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. eLife 4:e04988
    [Google Scholar]
  16. 16.  Yeeles JT, Deegan TD, Janska A, Early A, Diffley JF 2015. Regulated eukaryotic DNA replication origin firing with purified proteins. Nature 519:431–35
    [Google Scholar]
  17. 17.  Yeeles JT, Janska A, Early A, Diffley JF 2017. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65:105–16
    [Google Scholar]
  18. 18.  Kurat CF, Yeeles JT, Patel H, Early A, Diffley JF 2017. Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol. Cell 65:117–30
    [Google Scholar]
  19. 19.  Devbhandari S, Jiang J, Kumar C, Whitehouse I, Remus D 2017. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell 65:131–41
    [Google Scholar]
  20. 20.  Burgers PMJ, Kunkel TA 2017. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86:417–38
    [Google Scholar]
  21. 21.  Georgescu R, Yuan Z, Bai L, de Luna Almeida Santos R, Sun J et al. 2017. Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. PNAS 114:E697–706
    [Google Scholar]
  22. 22.  Fang L, Davey MJ, O'Donnell M 1999. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol. Cell 4:541–53
    [Google Scholar]
  23. 23.  Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F et al. 2006. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat. Cell Biol. 8:358–66
    [Google Scholar]
  24. 24.  McInerney P, O'Donnell M 2004. Functional uncoupling of twin polymerases: mechanism of polymerase dissociation from a lagging-strand block. J. Biol. Chem. 279:21543–51
    [Google Scholar]
  25. 25.  Higuchi K, Katayama T, Iwai S, Hidaka M, Horiuchi T, Maki H 2003. Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro. Genes Cells 8:437–49
    [Google Scholar]
  26. 26.  Pages V, Fuchs RP 2003. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo. Science 300:1300–3
    [Google Scholar]
  27. 27.  Lopes M, Foiani M, Sogo JM 2006. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21:15–27
    [Google Scholar]
  28. 28.  Sassanfar M, Roberts JW 1990. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J. Mol. Biol. 212:79–96
    [Google Scholar]
  29. 29.  Sogo JM, Lopes M, Foiani M 2002. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602
    [Google Scholar]
  30. 30.  Cha RS, Kleckner N 2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–6
    [Google Scholar]
  31. 31.  Zou L, Elledge SJ 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–48
    [Google Scholar]
  32. 32.  Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA 2005. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040–52
    [Google Scholar]
  33. 33.  Yeeles JT, Marians KJ 2013. Dynamics of leading-strand lesion skipping by the replisome. Mol. Cell 52:855–65
    [Google Scholar]
  34. 34.  Graham JE, Marians KJ, Kowalczykowski SC 2017. Independent and stochastic action of DNA polymerases in the replisome. Cell 169:1201–13.e17
    [Google Scholar]
  35. 35.  Pandey M, Syed S, Donmez I, Patel G, Ha T, Patel SS 2009. Coordinating DNA replication by means of priming loop and differential synthesis rate. Nature 462:940–43
    [Google Scholar]
  36. 36.  Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM 2006. DNA primase acts as a molecular brake in DNA replication. Nature 439:621–24
    [Google Scholar]
  37. 37.  Langston LD, Zhang D, Yurieva O, Georgescu RE, Finkelstein J et al. 2014. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. PNAS 111:15390–95
    [Google Scholar]
  38. 38.  Sun J, Shi Y, Georgescu RE, Yuan Z, Chait BT et al. 2015. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 22:976–82
    [Google Scholar]
  39. 39.  Zhou JC, Janska A, Goswami P, Renault L, Abid Ali F et al. 2017. CMG–Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. PNAS 114:4141–46
    [Google Scholar]
  40. 40.  Simon AC, Zhou JC, Perera RL, van Deursen F, Evrin C et al. 2014. A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome. Nature 510:293–97
    [Google Scholar]
  41. 41.  Villa F, Simon AC, Ortiz Bazan MA, Kilkenny ML, Wirthensohn D et al. 2016. Ctf4 is a hub in the eukaryotic replisome that links multiple CIP-box proteins to the CMG helicase. Mol. Cell 63:385–96
    [Google Scholar]
  42. 42.  Schauer GD, O'Donnell ME 2017. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. PNAS 114:675–80
    [Google Scholar]
  43. 43.  Prakash L. 1981. Characterization of postreplication repair in Saccharomycescerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol. Gen. Genet 184:471–78
    [Google Scholar]
  44. 44.  Lehmann AR. 1972. Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur. J. Biochem. 31:438–45
    [Google Scholar]
  45. 45.  Rupp WD, Howard-Flanders P 1968. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J. Mol. Biol. 31:291–304
    [Google Scholar]
  46. 46.  Yeeles JTP, Marians KJ 2011. The Escherichia coli replisome is inherently DNA damage tolerant. Science 334:235–38
    [Google Scholar]
  47. 47.  Callegari AJ, Clark E, Pneuman A, Kelly TJ 2010. Postreplication gaps at UV lesions are signals for checkpoint activation. PNAS 107:8219–24
    [Google Scholar]
  48. 48.  Callegari AJ, Kelly TJ 2006. UV irradiation induces a postreplication DNA damage checkpoint. PNAS 103:15877–82
    [Google Scholar]
  49. 49.  Elvers I, Johansson F, Groth P, Erixon K, Helleday T 2011. UV stalled replication forks restart by re-priming in human fibroblasts. Nucleic Acids Res 39:7049–57
    [Google Scholar]
  50. 50.  Fumasoni M, Zwicky K, Vanoli F, Lopes M, Branzei D 2015. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polα/Primase/Ctf4 complex. Mol. Cell 57:812–23
    [Google Scholar]
  51. 51.  Iyer LM, Koonin EV, Leipe DD, Aravind L 2005. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: structural insights and new members. Nucleic Acids Res 33:3875–96
    [Google Scholar]
  52. 52.  Bianchi J, Rudd SG, Jozwiakowski SK, Bailey LJ, Soura V et al. 2013. PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication. Mol. Cell 52:566–73
    [Google Scholar]
  53. 53.  Rudd SG, Glover L, Jozwiakowski SK, Horn D, Doherty AJ 2013. PPL2 translesion polymerase is essential for the completion of chromosomal DNA replication in the African trypanosome. Mol. Cell 52:554–65
    [Google Scholar]
  54. 54.  Wan L, Lou J, Xia Y, Su B, Liu T et al. 2013. hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep 14:1104–12
    [Google Scholar]
  55. 55.  Garcia-Gomez S, Reyes A, Martinez-Jimenez MI, Chocron ES, Mouron S et al. 2013. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52:541–53
    [Google Scholar]
  56. 56.  Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, Garcia-Gomez S, Chocron S et al. 2013. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol. 20:1383–89
    [Google Scholar]
  57. 57.  Kobayashi K, Guilliam TA, Tsuda M, Yamamoto J, Bailey LJ et al. 2016. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 15:1997–2008
    [Google Scholar]
  58. 58.  Lydeard JR, Jain S, Yamaguchi M, Haber JE 2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–23
    [Google Scholar]
  59. 59.  Mayle R, Campbell IM, Beck CR, Yu Y, Wilson M et al. 2015. Mus81 and converging forks limit the mutagenicity of replication fork breakage. Science 349:742–47
    [Google Scholar]
  60. 60.  Miyabe I, Mizuno K, Keszthelyi A, Daigaku Y, Skouteri M et al. 2015. Polymerase δ replicates both strands after homologous recombination–dependent fork restart. Nat. Struct. Mol. Biol. 22:932–38
    [Google Scholar]
  61. 61.  Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H et al. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–83
    [Google Scholar]
  62. 62.  Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K 2005. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19:1905–19
    [Google Scholar]
  63. 63.  Yang W, Woodgate R 2007. What a difference a decade makes: insights into translesion DNA synthesis. PNAS 104:15591–98
    [Google Scholar]
  64. 64.  McCulloch SD, Kunkel TA 2008. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res 18:148–61
    [Google Scholar]
  65. 65.  Wagner J, Gruz P, Kim SR, Yamada M, Matsui K et al. 1999. The dinB gene encodes a novel E. coli DNA polymerase, DNA pol IV, involved in mutagenesis. Mol. Cell 4:281–86
    [Google Scholar]
  66. 66.  Tang M, Shen X, Frank EG, O'Donnell M, Woodgate R, Goodman MF 1999. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. PNAS 96:8919–24
    [Google Scholar]
  67. 67.  Reuven NB, Arad G, Maor-Shoshani A, Livneh Z 1999. The mutagenesis protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J. Biol. Chem. 274:31763–66
    [Google Scholar]
  68. 68.  Kato T, Shinoura Y 1977. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol. Gen. Genet. 156:121–31
    [Google Scholar]
  69. 69.  Steinborn G. 1978. Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol. Gen. Genet. 165:87–93
    [Google Scholar]
  70. 70.  Goodman MF, Woodgate R 2013. Translesion DNA polymerases. Cold Spring Harb. Perspect. Biol. 5:a010363
    [Google Scholar]
  71. 71.  Livneh Z, Ziv O, Shachar S 2010. Multiple two-polymerase mechanisms in mammalian translesion DNA synthesis. Cell Cycle 9:729–35
    [Google Scholar]
  72. 72.  Gao Y, Mutter-Rottmayer E, Zlatanou A, Vaziri C, Yang Y 2017. Mechanisms of post-replication DNA repair. Genes 8:64
    [Google Scholar]
  73. 73.  Zhao L, Washington MT 2017. Translesion synthesis: insights into the selection and switching of DNA polymerases. Genes 8:24
    [Google Scholar]
  74. 74.  Indiani C, McInerney P, Georgescu R, Goodman MF, O'Donnell M 2005. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol. Cell 19:805–15
    [Google Scholar]
  75. 75.  Indiani C, Langston LD, Yurieva O, Goodman MF, O'Donnell M 2009. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. PNAS 106:6031–38
    [Google Scholar]
  76. 76.  Kath JE, Jergic S, Heltzel JM, Jacob DT, Dixon NE et al. 2014. Polymerase exchange on single DNA molecules reveals processivity clamp control of translesion synthesis. PNAS 111:7647–52
    [Google Scholar]
  77. 77.  McCulloch SD, Kokoska RJ, Chilkova O, Welch CM, Johansson E et al. 2004. Enzymatic switching for efficient and accurate translesion DNA replication. Nucleic Acids Res 32:4665–75
    [Google Scholar]
  78. 78.  Fernandez-Leiro R, Conrad J, Scheres SH, Lamers MH 2015. Cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. eLife 4:e11134
    [Google Scholar]
  79. 79.  Lewis JS, Spenkelink LM, Jergic S, Wood EA, Monachino E et al. 2017. Single-molecule visualization of fast polymerase turnover in the bacterial replisome. eLife 6:e23932
    [Google Scholar]
  80. 80.  Yuan Q, Dohrmann PR, Sutton MD, McHenry CS 2016. DNA polymerase III, but not polymerase IV, must be bound to a τ-containing DnaX complex to enable exchange into replication forks. J. Biol. Chem. 291:11727–35
    [Google Scholar]
  81. 81.  Beattie TR, Kapadia N, Nicolas E, Uphoff S, Wollman AJ et al. 2017. Frequent exchange of the DNA polymerase during bacterial chromosome replication. eLife 6:e21763
    [Google Scholar]
  82. 82.  Sale JE. 2012. Competition, collaboration and coordination—determining how cells bypass DNA damage. J. Cell Sci. 125:1633–43
    [Google Scholar]
  83. 83.  Xu X, Blackwell S, Lin A, Li F, Qin Z, Xiao W 2015. Error-free DNA-damage tolerance in Saccharomycescerevisiae. Mutat. Res. Rev. 764:43–50
    [Google Scholar]
  84. 84.  Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–41
    [Google Scholar]
  85. 85.  Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G et al. 2005. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821–24
    [Google Scholar]
  86. 86.  Hedglin M, Pandey B, Benkovic SJ 2016. Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. eLife 5:e19788
    [Google Scholar]
  87. 87.  Guo C, Sonoda E, Tang TS, Parker JL, Bielen AB et al. 2006. REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol. Cell 23:265–71
    [Google Scholar]
  88. 88.  Pustovalova Y, Maciejewski MW, Korzhnev DM 2013. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. J. Mol. Biol. 425:3091–105
    [Google Scholar]
  89. 89.  Sharma NM, Kochenova OV, Shcherbakova PV 2011. The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis. J. Biol. Chem. 286:33557–66
    [Google Scholar]
  90. 90.  Boehm EM, Powers KT, Kondratick CM, Spies M, Houtman JC, Washington MT 2016. The proliferating cell nuclear antigen (PCNA)-interacting protein (PIP) motif of DNA polymerase η mediates its interaction with the C-terminal domain of Rev1. J. Biol. Chem. 291:8735–44
    [Google Scholar]
  91. 91.  Boehm EM, Spies M, Washington MT 2016. PCNA tool belts and polymerase bridges form during translesion synthesis. Nucleic Acids Res 44:8250–60
    [Google Scholar]
  92. 92.  Nevin P, Gabbai CC, Marians KJ 2017. Replisome-mediated translesion synthesis by a cellular replicase. J. Biol. Chem. 292:13883–42
    [Google Scholar]
  93. 93.  Witkin EM. 1976. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 40:869–907
    [Google Scholar]
  94. 94.  Bridges BA, Mottershead RP 1976. Mutagenic DNA repair in Escherichia coli. III. Requirement for a function of DNA polymerase III in ultraviolet-light mutagenesis. Mol. Gen. Genet. 144:53–58
    [Google Scholar]
  95. 95.  Lu C, Scheuermann RH, Echols H 1986. Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit (ε) of DNA polymerase III: a possible mechanism for SOS-induced targeted mutagenesis. PNAS 83:619–23
    [Google Scholar]
  96. 96.  Rajagopalan M, Lu C, Woodgate R, O'Donnell M, Goodman MF, Echols H 1992. Activity of the purified mutagenesis proteins UmuC, UmuD′, and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase III. PNAS 89:10777–81
    [Google Scholar]
  97. 97.  Hagensee ME, Timme TL, Bryan SK, Moses RE 1987. DNA polymerase III of Escherichia coli is required for UV and ethyl methanesulfonate mutagenesis. PNAS 84:4195–99
    [Google Scholar]
  98. 98.  Gon S, Napolitano R, Rocha W, Coulon S, Fuchs RP 2011. Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. PNAS 108:19311–16
    [Google Scholar]
  99. 99.  Robinson A, McDonald JP, Caldas VE, Patel M, Wood EA et al. 2015. Regulation of mutagenic DNA polymerase V activation in space and time. PLOS Genet 11:e1005482
    [Google Scholar]
  100. 100.  Meng X, Zhou Y, Zhang S, Lee EY, Frick DN, Lee MY 2009. DNA damage alters DNA polymerase δ to a form that exhibits increased discrimination against modified template bases and mismatched primers. Nucleic Acids Res 37:647–57
    [Google Scholar]
  101. 101.  Narita T, Tsurimoto T, Yamamoto J, Nishihara K, Ogawa K et al. 2010. Human replicative DNA polymerase δ can bypass T-T (6–4) ultraviolet photoproducts on template strands. Genes Cells 15:1228–39
    [Google Scholar]
  102. 102.  Hirota K, Yoshikiyo K, Guilbaud G, Tsurimoto T, Murai J et al. 2015. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ. Nucleic Acids Res 43:1671–83
    [Google Scholar]
  103. 103.  Hirota K, Tsuda M, Mohiuddin, Tsurimoto T, Cohen IS et al. 2016. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ. Nucleic Acids Res 44:7242–50
    [Google Scholar]
  104. 104.  Vanoli F, Fumasoni M, Szakal B, Maloisel L, Branzei D 2010. Replication and recombination factors contributing to recombination-dependent bypass of DNA lesions by template switch. PLOS Genet 6:e1001205
    [Google Scholar]
  105. 105.  Bonner JN, Choi K, Xue X, Torres NP, Szakal B et al. 2016. Smc5/6 mediated sumoylation of the Sgs1-Top3-Rmi1 complex promotes removal of recombination intermediates. Cell Rep 16:368–78
    [Google Scholar]
  106. 106.  Branzei D, Szakal B 2016. DNA damage tolerance by recombination: molecular pathways and DNA structures. DNA Repair 44:68–75
    [Google Scholar]
  107. 107.  Giannattasio M, Zwicky K, Follonier C, Foiani M, Lopes M, Branzei D 2014. Visualization of recombination-mediated damage bypass by template switching. Nat. Struct. Mol. Biol. 21:884–92
    [Google Scholar]
  108. 108.  Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–33
    [Google Scholar]
  109. 109.  Armstrong AA, Mohideen F, Lima CD 2012. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483:59–63
    [Google Scholar]
  110. 110.  Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS et al. 2003. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–9
    [Google Scholar]
  111. 111.  Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F 2003. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–12
    [Google Scholar]
  112. 112.  Urulangodi M, Sebesta M, Menolfi D, Szakal B, Sollier J et al. 2015. Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes Dev 29:2067–80
    [Google Scholar]
  113. 113.  Moldovan GL, Dejsuphong D, Petalcorin MI, Hofmann K, Takeda S et al. 2012. Inhibition of homologous recombination by the PCNA-interacting protein PARI. Mol. Cell 45:75–86
    [Google Scholar]
  114. 114.  Burkovics P, Dome L, Juhasz S, Altmannova V, Sebesta M et al. 2016. The PCNA-associated protein PARI negatively regulates homologous recombination via the inhibition of DNA repair synthesis. Nucleic Acids Res 44:3176–89
    [Google Scholar]
  115. 115.  Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W et al. 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–84
    [Google Scholar]
  116. 116.  Bugreev DV, Yu X, Egelman EH, Mazin AV 2007. Novel pro- and anti-recombination activities of the Bloom's syndrome helicase. Genes Dev 21:3085–94
    [Google Scholar]
  117. 117.  Kanagaraj R, Saydam N, Garcia PL, Zheng L, Janscak P 2006. Human RECQ5β helicase promotes strand exchange on synthetic DNA structures resembling a stalled replication fork. Nucleic Acids Res 34:5217–31
    [Google Scholar]
  118. 118.  Tikoo S, Madhavan V, Hussain M, Miller ES, Arora P et al. 2013. Ubiquitin-dependent recruitment of the Bloom syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO J 32:1778–92
    [Google Scholar]
  119. 119.  Dou H, Huang C, Singh M, Carpenter PB, Yeh ET 2010. Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol. Cell 39:333–45
    [Google Scholar]
  120. 120.  Dungrawala H, Bhat KP, Le Meur R Chazin WJ, Ding X et al. 2017. RADX promotes genome stability and modulates chemosensitivity by regulating RAD51 at replication forks. Mol. Cell 67:374–86.e5
    [Google Scholar]
  121. 121.  Higgins NP, Kato K, Strauss B 1976. A model for replication repair in mammalian cells. J. Mol. Biol. 101:417–25
    [Google Scholar]
  122. 122.  Atkinson J, McGlynn P 2009. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 37:3475–92
    [Google Scholar]
  123. 123.  Singleton MR, Scaife S, Wigley DB 2001. Structural analysis of DNA replication fork reversal by RecG. Cell 107:79–89
    [Google Scholar]
  124. 124.  Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P et al. 2001. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–61
    [Google Scholar]
  125. 125.  Chaudhuri AR, Hashimoto Y, Herrador R, Neelsen KJ, Fachinetti D et al. 2012. Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat. Struct. Mol. Biol. 19:417–23
    [Google Scholar]
  126. 126.  Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA et al. 2015. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol. 208:563–79
    [Google Scholar]
  127. 127.  Park YB, Park MJ, Kimura K, Shimizu K, Lee SH, Yokota J 2002. Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet. Cytogenet. 133:105–11
    [Google Scholar]
  128. 128.  Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J et al. 2012. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLOS Genet 8:e1002772
    [Google Scholar]
  129. 129.  Hashimoto Y, Chaudhuri AR, Lopes M, Costanzo V 2010. Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol. 17:1305–11
    [Google Scholar]
  130. 130.  Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M 2011. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–42
    [Google Scholar]
  131. 131.  Schlacher K, Wu H, Jasin M 2012. A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell 22:106–16
    [Google Scholar]
  132. 132.  Ying S, Hamdy FC, Helleday T 2012. Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Res 72:2814–21
    [Google Scholar]
  133. 133.  Vallerga MB, Mansilla SF, Federico MB, Bertolin AP, Gottifredi V 2015. Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation. PNAS 112:E6624–33
    [Google Scholar]
  134. 134.  Kolinjivadi AM, Sannino V, De Antoni A, Zadorozhny K, Kilkenny M et al. 2017. Smarcal1-mediated fork reversal triggers Mre11-dependent degradation of nascent DNA in the absence of Brca2 and stable Rad51 nucleofilaments. Mol. Cell 67:867–81
    [Google Scholar]
  135. 135.  Kolinjivadi AM, Sannino V, de Antoni A, Techer H, Baldi G, Costanzo V 2017. Moonlighting at replication forks—a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett 591:1083–100
    [Google Scholar]
  136. 136.  Courcelle J, Donaldson JR, Chow KH, Courcelle CT 2003. DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299:1064–67
    [Google Scholar]
  137. 137.  Gupta S, Yeeles JTP, Marians KJ 2014. Regression of replication forks stalled by leading-strand template damage I. Both RecG and RuvAB catalyze regression, but RuvC cleaves the Holliday junctions formed by RecG preferentially. J. Biol. Chem. 289:28376–87
    [Google Scholar]
  138. 138.  Sirbu BM, Couch FB, Feigerle JT, Bhaskara S, Hiebert SW, Cortez D 2011. Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev 25:1320–27
    [Google Scholar]
  139. 139.  Lopez-Contreras AJ, Ruppen I, Nieto-Soler M, Murga M, Rodriguez-Acebes S et al. 2013. A proteomic characterization of factors enriched at nascent DNA molecules. Cell Rep 3:1105–16
    [Google Scholar]
  140. 140.  Lossaint G, Larroque M, Ribeyre C, Bec N, Larroque C et al. 2013. FANCD2 binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling. Mol. Cell 51:678–90
    [Google Scholar]
  141. 141.  Manosas M, Perumal SK, Croquette V, Benkovic SJ 2012. Direct observation of stalled fork restart via fork regression in the T4 replication system. Science 338:1217–20
    [Google Scholar]
  142. 142.  Xu L, Marians KJ 2003. PriA mediates DNA replication pathway choice at recombination intermediates. Mol. Cell 11:817–26
    [Google Scholar]
  143. 143.  Heller RC, Marians KJ 2005. The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol. Cell 17:733–43
    [Google Scholar]
  144. 144.  Heller RC, Marians KJ 2006. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–62
    [Google Scholar]
  145. 145.  Ibarra A, Schwob E, Mendez J 2008. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. PNAS 105:8956–61
    [Google Scholar]
  146. 146.  Ge XQ, Jackson DA, Blow JJ 2007. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev 21:3331–41
    [Google Scholar]
  147. 147.  Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I et al. 2011. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol. Cell 41:543–53
    [Google Scholar]
  148. 148.  Sakofsky CJ, Malkova A 2017. Break induced replication in eukaryotes: mechanisms, functions, and consequences. Crit. Rev. Biochem. Mol. Biol. 52:395–413
    [Google Scholar]
  149. 149.  Hashimoto Y, Puddu F, Costanzo V 2011. RAD51- and MRE11-dependent reassembly of uncoupled CMG helicase complex at collapsed replication forks. Nat. Struct. Mol. Biol. 19:17–24
    [Google Scholar]
  150. 150.  Thangavel S, Berti M, Levikova M, Pinto C, Gomathinayagam S et al. 2015. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208:545–62
    [Google Scholar]
  151. 151.  Berti M, Chaudhuri AR, Thangavel S, Gomathinayagam S, Kenig S et al. 2013. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat. Struct. Mol. Biol. 20:347–54
    [Google Scholar]
  152. 152.  Betous R, Couch FB, Mason AC, Eichman BF, Manosas M, Cortez D 2013. Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep 3:1958–69
    [Google Scholar]
  153. 153.  Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA 2017. Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170:774–86.e19
    [Google Scholar]
  154. 154.  Lang KS, Hall AN, Merrikh CN, Ragheb M, Tabakh H et al. 2017. Replication-transcription conflicts generate R-loops that orchestrate bacterial stress survival and pathogenesis. Cell 170:787–99.e18
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-011921
Loading
/content/journals/10.1146/annurev-biochem-062917-011921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error