1932

Abstract

Cells must constantly monitor the integrity of their macromolecular constituents. Proteins are the most versatile class of macromolecules but are sensitive to structural alterations. Misfolded or otherwise aberrant protein structures lead to dysfunction and finally aggregation. Their presence is linked to aging and a plethora of severe human diseases. Thus, misfolded proteins have to be rapidly eliminated. Secretory proteins constitute more than one-third of the eukaryotic proteome. They are imported into the endoplasmic reticulum (ER), where they are folded and modified. A highly elaborated machinery controls their folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol. In the cytosol, they are degraded by the highly selective ubiquitin–proteasome system. This process of protein quality control followed by proteasomal elimination of the misfolded protein is termed ER-associated degradation (ERAD), and it depends on an intricate interplay between the ER and the cytosol.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012749
2018-06-20
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012749.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012749&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Berg JM, Tymoczko JL, Gatto GJ Jr., Stryer L 2015. Biochemistry New York: W.H. Freeman, 8th ed.
  2. 2.  Amm I, Sommer T, Wolf DH 2014. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim. Biophys. Acta Mol. Cell Res. 1843:1182–96
    [Google Scholar]
  3. 3.  Hartl FU, Bracher A, Hayer-Hartl M 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:7356324–32
    [Google Scholar]
  4. 4.  Balchin D, Hayer-Hartl M, Hartl FU 2016. In vivo aspects of protein folding and quality control. Science 353:6294aac4354
    [Google Scholar]
  5. 5.  Shao S, Hegde RS 2016. Target selection during protein quality control. Trends Biochem. Sci. 41:2124–37
    [Google Scholar]
  6. 6.  Chiti F, Dobson CM 2017. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu. Rev. Biochem. 86:27–68
    [Google Scholar]
  7. 7.  Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE 2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu. Rev. Biochem. 78:959–91
    [Google Scholar]
  8. 8.  Labbadia J, Morimoto RI 2015. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84:435–64
    [Google Scholar]
  9. 9.  Walker LC. 2016. Proteopathic strains and the heterogeneity of neurodegenerative diseases. Annu. Rev. Genet. 50:329–46
    [Google Scholar]
  10. 10.  Qi L, Tsai B, Arvan P 2017. New insights into the physiological role of endoplasmic reticulum-associated degradation. Trends Cell Biol 27:6430–40
    [Google Scholar]
  11. 11.  Guerriero CJ, Brodsky JL 2012. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol. Rev. 92:2537–76This review gives a comprehensive overview of human diseases linked to ERAD.
    [Google Scholar]
  12. 12.  Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO, Marcotte EM 2015. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348:6237921–25
    [Google Scholar]
  13. 13.  Chen Y, Zhang Y, Yin Y, Gao G, Li S et al. 2005. SPD–a web-based secreted protein database. Nucleic Acids Res 33:database issueD169–73
    [Google Scholar]
  14. 14.  Choi J, Park J, Kim D, Jung K, Kang S, Lee Y-H 2010. Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genom 11:105
    [Google Scholar]
  15. 15.  Braakman I, Hebert DN 2013. Protein folding in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5:5a013201
    [Google Scholar]
  16. 16.  Klausner RD, Sitia R 1990. Protein degradation in the endoplasmic reticulum. Cell 62:4611–14
    [Google Scholar]
  17. 17.  Bonifacino JS, Lippincott-Schwartz J 1991. Degradation of proteins within the endoplasmic reticulum. Curr. Opin. Cell Biol. 3:4592–600
    [Google Scholar]
  18. 18.  Vembar SS, Brodsky JL 2008. One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9:12944–57
    [Google Scholar]
  19. 19.  Hershko A, Ciechanover A 1992. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61:761–807
    [Google Scholar]
  20. 20.  Hough R, Pratt G, Rechsteiner M 1986. Ubiquitin-lysozyme conjugates. Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates. J. Biol. Chem. 261:52400–8
    [Google Scholar]
  21. 21.  Waxman L, Fagan JM, Goldberg AL 1987. Demonstration of two distinct high molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin conjugates. J. Biol. Chem. 262:62451–57
    [Google Scholar]
  22. 22.  Heinemeyer W, Kleinschmidt JA, Saidowsky J, Escher C, Wolf DH 1991. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10:3555–62
    [Google Scholar]
  23. 23.  Sommer T, Jentsch S 1993. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 365:6442176–79
    [Google Scholar]
  24. 24.  Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR 1995. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:1129–35
    [Google Scholar]
  25. 25.  Ward CL, Omura S, Kopito RR 1995. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell 83:1121–27
    [Google Scholar]
  26. 26.  Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL 1996. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:5769–79
    [Google Scholar]
  27. 27.  McCracken AA, Brodsky JL 1996. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132:3291–98
    [Google Scholar]
  28. 28.  Walter P. 2010. Walking along the serendipitous path of discovery. Mol. Biol. Cell 21:115–17
    [Google Scholar]
  29. 29.  Wolf DH, Fink GR 1975. Proteinase C (carboxypeptidase Y) mutant of yeast. J. Bacteriol. 123:31150–56
    [Google Scholar]
  30. 30.  Finger A, Knop M, Wolf DH 1993. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur. J. Biochem. 218:2565–74
    [Google Scholar]
  31. 31.  Hiller MM, Finger A, Schweiger M, Wolf DH 1996. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273:52821725–28This landmark study using genetic and biochemical tools disclosed the basic mechanism of ERAD.
    [Google Scholar]
  32. 32.  Hochstrasser M. 2006. Ubiquitination and protein turnover. Landmark Papers in Yeast Biology P Linder, D Shore, MN Hall 267–84 New York: Cold Spring Harb. Lab
    [Google Scholar]
  33. 33.  Blobel G. 1995. Unidirectional and bidirectional protein traffic across membranes. Cold Spring Harb. Symp. Quant. Biol. 60:1–10
    [Google Scholar]
  34. 34.  Rapoport TA. 2007. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450:7170663–69
    [Google Scholar]
  35. 35.  Zimmermann R, Eyrisch S, Ahmad M, Helms V 2011. Protein translocation across the ER membrane. Biochim. Biophys. Acta 1808:3912–24
    [Google Scholar]
  36. 36.  Normington K, Kohno K, Kozutsumi Y, Gething MJ, Sambrook J 1989. S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57:71223–36
    [Google Scholar]
  37. 37.  van Anken E, Braakman I 2005. Versatility of the endoplasmic reticulum protein folding factory. Crit. Rev. Biochem. Mol. Biol. 40:4191–228
    [Google Scholar]
  38. 38.  Verghese J, Abrams J, Wang Y, Morano KA 2012. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol. Mol. Biol. Rev. 76:2115–58
    [Google Scholar]
  39. 39.  Appenzeller-Herzog C, Ellgaard L 2008. The human PDI family: versatility packed into a single fold. Biochim. Biophys. Acta 1783:4535–48
    [Google Scholar]
  40. 40.  Pearse BR, Hebert DN 2010. Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. Biochim. Biophys. Acta 1803:6684–93
    [Google Scholar]
  41. 41.  Aebi M, Bernasconi R, Clerc S, Molinari M 2010. N-glycan structures: recognition and processing in the ER. Trends Biochem. Sci. 35:274–82
    [Google Scholar]
  42. 42.  Xu C, Ng DT 2015. Glycosylation-directed quality control of protein folding. Nat. Rev. Mol. Cell Biol. 16:12742–52
    [Google Scholar]
  43. 43.  Carvalho P, Goder V, Rapoport TA 2006. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126:2361–7343 and 44: These studies describe the detection of three different ERAD paths.
    [Google Scholar]
  44. 44.  Vashist S, Ng DT 2004. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol. 165:141–5243 and 44: These studies describe the detection of three different ERAD paths.
    [Google Scholar]
  45. 45.  Raasi S, Wolf DH 2007. Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin. Cell Dev. Biol. 18:6780–91
    [Google Scholar]
  46. 46.  Kostova Z, Wolf DH 2005. Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J. Cell Sci. 118:1485–92
    [Google Scholar]
  47. 47.  Breitling J, Aebi M 2013. N-linked protein glycosylation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 5:8a013359
    [Google Scholar]
  48. 48.  Jakob CA, Burda P, Roth J, Aebi M 1998. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J. Cell Biol. 142:51223–33
    [Google Scholar]
  49. 49.  Hitt R, Wolf DH 2004. DER7, encoding α-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res 4:8815–20
    [Google Scholar]
  50. 50.  Knop M, Hauser N, Wolf DH 1996. N-glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12:121229–38
    [Google Scholar]
  51. 51.  Helenius A, Aebi M 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73:1019–49
    [Google Scholar]
  52. 52.  Nakatsukasa K, Nishikawa S, Hosokawa N, Nagata K, Endo T 2001. Mnl1p, an α-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J. Biol. Chem. 276:128635–38
    [Google Scholar]
  53. 53.  Jakob CA, Bodmer D, Spirig U, Battig P, Marcil A et al. 2001. Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2:5423–30
    [Google Scholar]
  54. 54.  Gnann A, Riordan JR, Wolf DH 2004. Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. Mol. Biol. Cell 15:94125–35
    [Google Scholar]
  55. 55.  Gauss R, Kanehara K, Carvalho P, Ng DT, Aebi M 2011. A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. Mol. Cell 42:6782–93
    [Google Scholar]
  56. 56.  Clerc S, Hirsch C, Oggier DM, Deprez P, Jakob C et al. 2009. Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum. J. Cell Biol. 184:1159–72
    [Google Scholar]
  57. 57.  Quan EM, Kamiya Y, Kamiya D, Denic V, Weibezahn J et al. 2008. Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. Mol. Cell 32:6870–77
    [Google Scholar]
  58. 58.  Sakoh-Nakatogawa M, Nishikawa S, Endo T 2009. Roles of protein-disulfide isomerase-mediated disulfide bond formation of yeast Mnl1p in endoplasmic reticulum-associated degradation. J. Biol. Chem. 284:1811815–25
    [Google Scholar]
  59. 59.  Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH 1997. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:6645891–95
    [Google Scholar]
  60. 60.  Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA 1999. The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J. Biol. Chem. 274:63453–60
    [Google Scholar]
  61. 61.  Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T 2001. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J. Cell Biol. 153:51061–70
    [Google Scholar]
  62. 62.  Buschhorn BA, Kostova Z, Medicherla B, Wolf DH 2004. A genome-wide screen identifies Yos9p as essential for ER-associated degradation of glycoproteins. FEBS Lett 577:3422–26
    [Google Scholar]
  63. 63.  Bhamidipati A, Denic V, Quan EM, Weissman JS 2005. Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol. Cell 19:6741–51
    [Google Scholar]
  64. 64.  Kim W, Spear ED, Ng DT 2005. Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. Mol. Cell 19:6753–64
    [Google Scholar]
  65. 65.  Szathmary R, Bielmann R, Nita-Lazar M, Burda P, Jakob CA 2005. Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. Mol. Cell 19:6765–75
    [Google Scholar]
  66. 66.  Martinez Benitez E, Stolz A, Becher A, Wolf DH 2011. Mnl2, a novel component of the ER associated protein degradation pathway. Biochem. Biophys. Res. Commun. 414:3528–32
    [Google Scholar]
  67. 67.  Durr G, Strayle J, Plemper R, Elbs S, Klee SK et al. 1998. The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol. Biol. Cell 9:51149–62
    [Google Scholar]
  68. 68.  Lipari F, Herscovics A 1999. Calcium binding to the class I α-1,2-mannosidase from Saccharomyces cerevisiae occurs outside the EF hand motif. Biochemistry 38:31111–18
    [Google Scholar]
  69. 69.  Martinez Benitez E, Stolz A, Wolf DH 2011. Yos9, a control protein for misfolded glycosylated and non-glycosylated proteins in ERAD. FEBS Lett 585:193015–19
    [Google Scholar]
  70. 70.  Jaenicke LA, Brendebach H, Selbach M, Hirsch C 2011. Yos9p assists in the degradation of certain nonglycosylated proteins from the endoplasmic reticulum. Mol. Biol. Cell 22:162937–45
    [Google Scholar]
  71. 71.  Akasaka-Manya K, Manya H, Nakajima A, Kawakita M, Endo T 2006. Physical and functional association of human protein O-mannosyltransferases 1 and 2. J. Biol. Chem. 281:2819339–45
    [Google Scholar]
  72. 72.  Goder V, Melero A 2011. Protein O-mannosyltransferases participate in ER protein quality control. J. Cell Sci. 124:144–53
    [Google Scholar]
  73. 73.  Xu C, Wang S, Thibault G, Ng DT 2013. Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway. Science 340:6135978–81
    [Google Scholar]
  74. 74.  Xu C, Ng DTW 2015. O-mannosylation: The other glycan player of ER quality control. Semin. Cell Dev. Biol. 41:129–34
    [Google Scholar]
  75. 75.  Hampton RY, Gardner RG, Rine J 1996. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell 7:122029–44
    [Google Scholar]
  76. 76.  Plemper RK, Bordallo J, Deak PM, Taxis C, Hitt R, Wolf DH 1999. Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J. Cell Sci. 112:4123–34
    [Google Scholar]
  77. 77.  Denic V, Quan EM, Weissman JS 2006. A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation. Cell 126:2349–59
    [Google Scholar]
  78. 78.  Gardner RG, Swarbrick GM, Bays NW, Cronin SR, Wilhovsky S et al. 2000. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol. 151:169–82
    [Google Scholar]
  79. 79.  Gauss R, Jarosch E, Sommer T, Hirsch C 2006. A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery. Nat. Cell Biol. 8:8849–54
    [Google Scholar]
  80. 80.  Kanehara K, Xie W, Ng DT 2010. Modularity of the Hrd1 ERAD complex underlies its diverse client range. J. Cell Biol. 188:5707–16
    [Google Scholar]
  81. 81.  Mehnert M, Sommermeyer F, Berger M, Kumar Lakshmipathy S, Gauss R et al. 2015. The interplay of Hrd3 and the molecular chaperone system ensures efficient degradation of malfolded secretory proteins. Mol. Biol. Cell 26:2185–94
    [Google Scholar]
  82. 82.  Knop M, Finger A, Braun T, Hellmuth K, Wolf DH 1996. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15:4753–63
    [Google Scholar]
  83. 83.  Bordallo J, Plemper RK, Finger A, Wolf DH 1998. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9:1209–22
    [Google Scholar]
  84. 84.  Hitt R, Wolf DH 2004. Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS Yeast Res 4:7721–29
    [Google Scholar]
  85. 85.  Bordallo J, Wolf DH 1999. A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS Lett 448:2–3244–48
    [Google Scholar]
  86. 86.  Deak PM, Wolf DH 2001. Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J. Biol. Chem. 276:1410663–69
    [Google Scholar]
  87. 87.  Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY 2001. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol. 3:124–29
    [Google Scholar]
  88. 88.  Schoebel S, Mi W, Stein A, Ovchinnikov S, Pavlovicz R et al. 2017. Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3. Nature 548:352–55The first cryo-EM study of an ERAD component that uncovered a possible channel function for Hrd1/Der3.
    [Google Scholar]
  89. 89.  Horn SC, Hanna J, Hirsch C, Volkwein C, Schutz A et al. 2009. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell 36:5782–93
    [Google Scholar]
  90. 90.  Mehnert M, Sommer T, Jarosch E 2014. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol. 16:177–86This study showed that Der1 initiates the export of ERAD-L substrate across the ER membrane.
    [Google Scholar]
  91. 91.  Vashistha N, Neal SE, Singh A, Carroll SM, Hampton RY 2016. Direct and essential function for Hrd3 in ER-associated degradation. PNAS 113:215934–39
    [Google Scholar]
  92. 92.  Goder V, Carvalho P, Rapoport TA 2008. The ER-associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p. FEBS Lett 582:111575–80
    [Google Scholar]
  93. 93.  Greenblatt EJ, Olzmann JA, Kopito RR 2011. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol. 18:101147–52
    [Google Scholar]
  94. 94.  Lemberg MK. 2013. Sampling the membrane: function of rhomboid-family proteins. Trends Cell Biol 23:5210–17
    [Google Scholar]
  95. 95.  Fleig L, Bergbold N, Sahasrabudhe P, Geiger B, Kaltak L, Lemberg MK 2012. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell 47:4558–69
    [Google Scholar]
  96. 96.  Hampton RY, Sommer T 2012. Finding the will and the way of ERAD substrate retrotranslocation. Curr. Opin. Cell Biol. 24:4460–66
    [Google Scholar]
  97. 97.  Wilhovsky S, Gardner R, Hampton R 2000. HRD gene dependence of endoplasmic reticulum-associated degradation. Mol. Biol. Cell 11:51697–708
    [Google Scholar]
  98. 98.  Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T 2000. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell Biol. 2:7379–84
    [Google Scholar]
  99. 99.  Biederer T, Volkwein C, Sommer T 1997. Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278:53441806–9
    [Google Scholar]
  100. 100.  von Delbrück M, Kniss A, Rogov VV, Pluska L, Bagola K et al. 2016. The CUE domain of Cue1 aligns growing ubiquitin chains with Ubc7 for rapid elongation. Mol. Cell 62:6918–28
    [Google Scholar]
  101. 101.  Bagola K, von Delbruck M, Dittmar G, Scheffner M, Ziv I et al. 2013. Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. Mol. Cell 50:4528–39
    [Google Scholar]
  102. 102.  Wang CW, Lee SC 2012. The ubiquitin-like (UBX)-domain-containing protein Ubx2/Ubxd8 regulates lipid droplet homeostasis. J. Cell Sci. 125:2930–39
    [Google Scholar]
  103. 103.  Schuberth C, Buchberger A 2005. Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation. Nat. Cell Biol. 7:10999–1006
    [Google Scholar]
  104. 104.  Neuber O, Jarosch E, Volkwein C, Walter J, Sommer T 2005. Ubx2 links the Cdc48 complex to ER-associated protein degradation. Nat. Cell Biol. 7:10993–98
    [Google Scholar]
  105. 105.  Bays NW, Wilhovsky SK, Goradia A, Hodgkiss-Harlow K, Hampton RY 2001. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 12:124114–28
    [Google Scholar]
  106. 106.  Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S 2002. Role of the ubiquitin-selective CDC48 (UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21:4615–21
    [Google Scholar]
  107. 107.  Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D et al. 2002. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 4:2134–39
    [Google Scholar]
  108. 108.  Rabinovich E, Kerem A, Frohlich KU, Diamant N, Bar-Nun S 2002. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22:2626–34
    [Google Scholar]
  109. 109.  Ye Y, Meyer HH, Rapoport TA 2001. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:6864652–56
    [Google Scholar]
  110. 110.  Wolf DH, Stolz A 2012. The Cdc48 machine in endoplasmic reticulum associated protein degradation. Biochim. Biophys. Acta 1823:1117–24
    [Google Scholar]
  111. 111.  Richly H, Rape M, Braun S, Rumpf S, Hoege C, Jentsch S 2005. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120:173–84
    [Google Scholar]
  112. 112.  Medicherla B, Kostova Z, Schaefer A, Wolf DH 2004. A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep 5:7692–97
    [Google Scholar]
  113. 113.  Suzuki T, Park H, Kwofie MA, Lennarz WJ 2001. Rad23 provides a link between the Png1 deglycosylating enzyme and the 26 S proteasome in yeast. J. Biol. Chem. 276:2421601–7
    [Google Scholar]
  114. 114.  Lee JH, Choi JM, Lee C, Yi KJ, Cho Y 2005. Structure of a peptide:N-glycanase-Rad23 complex: insight into the deglycosylation for denatured glycoproteins. PNAS 102:269144–49
    [Google Scholar]
  115. 115.  Hirsch C, Blom D, Ploegh HL 2003. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J 22:51036–46
    [Google Scholar]
  116. 116.  Suzuki T. 2007. Cytoplasmic peptide:N-glycanase and catabolic pathway for free N-glycans in the cytosol. Semin. Cell Dev. Biol. 18:6762–69
    [Google Scholar]
  117. 117.  Suzuki T, Park H, Hollingsworth NM, Sternglanz R, Lennarz WJ 2000. PNG1, a yeast gene encoding a highly conserved peptide:N-glycanase. J. Cell Biol. 149:51039–52
    [Google Scholar]
  118. 118.  Friedmann E, Salzberg Y, Weinberger A, Shaltiel S, Gerst JE 2002. YOS9, the putative yeast homolog of a gene amplified in osteosarcomas, is involved in the endoplasmic reticulum (ER)-Golgi transport of GPI-anchored proteins. J. Biol. Chem. 277:3835274–81
    [Google Scholar]
  119. 119.  Christianson JC, Ye Y 2014. Cleaning up in the endoplasmic reticulum: ubiquitin in charge. Nat. Struct. Mol. Biol. 21:4325–35
    [Google Scholar]
  120. 120.  Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW 1999. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J. Biol. Chem. 274:3021375–86
    [Google Scholar]
  121. 121.  Mueller B, Lilley BN, Ploegh HL 2006. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J. Cell Biol. 175:2261–70
    [Google Scholar]
  122. 122.  Christianson JC, Shaler TA, Tyler RE, Kopito RR 2008. OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat. Cell Biol. 10:3272–82
    [Google Scholar]
  123. 123.  Hosokawa N, Kamiya Y, Kamiya D, Kato K, Nagata K 2009. Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans. J. Biol. Chem. 284:2517061–68
    [Google Scholar]
  124. 124.  Olzmann JA, Kopito RR, Christianson JC 2013. The mammalian endoplasmic reticulum-associated degradation system. Cold Spring Harb. Perspect. Biol. 5:a013185
    [Google Scholar]
  125. 125.  Christianson JC, Olzmann JA, Shaler TA, Sowa ME, Bennett EJ et al. 2011. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol. 14:193–105
    [Google Scholar]
  126. 126.  Kikkert M, Doolman R, Dai M, Avner R, Hassink G et al. 2004. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J. Biol. Chem. 279:53525–34
    [Google Scholar]
  127. 127.  Stolz A, Hilt W, Buchberger A, Wolf DH 2011. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36:10515–23
    [Google Scholar]
  128. 128.  Preston GM, Brodsky JL 2017. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem. J. 474:4445–69
    [Google Scholar]
  129. 129.  Ciechanover A, Stanhill A 2014. The complexity of recognition of ubiquitinated substrates by the 26S proteasome. Biochim. Biophys. Acta 1843:186–96
    [Google Scholar]
  130. 130.  Shimizu Y, Okuda-Shimizu Y, Hendershot LM 2010. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol. Cell 40:6917–26
    [Google Scholar]
  131. 131.  Deshaies RJ, Joazeiro CAP 2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78:399–434
    [Google Scholar]
  132. 132.  Metzger MB, Pruneda JN, Klevit RE, Weissman AM 2014. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta 1843:147–60
    [Google Scholar]
  133. 133.  Scheffner M, Kumar S 2014. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim. Biophys. Acta 1843:161–74
    [Google Scholar]
  134. 134.  Berndsen CE, Wolberger C 2014. New insights into ubiquitin E3 ligase mechanism. Nat. Struct. Mol. Biol. 21:4301–7
    [Google Scholar]
  135. 135.  Spratt DE, Walden H, Shaw GS 2014. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458:3421–37
    [Google Scholar]
  136. 136.  Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y et al. 2009. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:1133–45
    [Google Scholar]
  137. 137.  Komander D, Rape M 2012. The ubiquitin code. Annu. Rev. Biochem. 81:203–29
    [Google Scholar]
  138. 138.  Metzger MB, Hristova VA, Weissman AM 2012. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci. 125:531–37
    [Google Scholar]
  139. 139.  Zheng N, Shabek N 2017. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86:129–57
    [Google Scholar]
  140. 140.  Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78:477–513
    [Google Scholar]
  141. 141.  Wolf DH, Hilt W 2004. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta 1695:1–319–31
    [Google Scholar]
  142. 142.  Tomko RJ Jr., Hochstrasser M. 2013. Molecular architecture and assembly of the eukaryotic proteasome. Annu. Rev. Biochem. 82:415–45
    [Google Scholar]
  143. 143.  Kish-Trier E, Hill CP 2013. Structural biology of the proteasome. Annu. Rev. Biophys. 42:29–49
    [Google Scholar]
  144. 144.  Finley D, Chen X, Walters KJ 2016. Gates, channels, and switches: elements of the proteasome machine. Trends Biochem. Sci. 41:177–93
    [Google Scholar]
  145. 145.  Romisch K. 2017. A case for Sec61 channel involvement in ERAD. Trends Biochem. Sci. 42:3171–79This review discusses participation of Sec61 in protein retrotranslocation in ERAD.
    [Google Scholar]
  146. 146.  Inobe T, Fishbain S, Prakash S, Matouschek A 2011. Defining the geometry of the two-component proteasome degron. Nat. Chem. Biol. 7:3161–67
    [Google Scholar]
  147. 147.  Aufderheide A, Unverdorben P, Baumeister W, Forster F 2015. Structural disorder and its role in proteasomal degradation. FEBS Lett 589:19 Part A2552–60
    [Google Scholar]
  148. 148.  Isaacson RL, Pye VE, Simpson P, Meyer HH, Zhang X et al. 2007. Detailed structural insights into the p97-Npl4-Ufd1 interface. J. Biol. Chem. 282:2921361–69
    [Google Scholar]
  149. 149.  Buchberger A, Schindelin H, Hanzelmann P 2015. Control of p97 function by cofactor binding. FEBS Lett 589:19 Part A2578–89
    [Google Scholar]
  150. 150.  Barthelme D, Sauer RT 2016. Origin and functional evolution of the Cdc48/p97/VCP AAA+ protein unfolding and remodeling machine. J. Mol. Biol. 428:9 Part B1861–69
    [Google Scholar]
  151. 151.  DeLaBarre B, Brunger AT 2005. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 347:2437–52
    [Google Scholar]
  152. 152.  Schuller JM, Beck F, Lossl P, Heck AJ, Forster F 2016. Nucleotide-dependent conformational changes of the AAA+ ATPase p97 revisited. FEBS Lett 590:5595–604
    [Google Scholar]
  153. 153.  Bodnar NO, Rapoport TA 2017. Molecular mechanism of substrate processing by the Cdc48 ATPase complex. Cell 169:4722–35This study describes a novel attractive pulling mechanism of the Cdc48 motor.
    [Google Scholar]
  154. 154.  Alberts SM, Sonntag C, Schafer A, Wolf DH 2009. Ubx4 modulates cdc48 activity and influences degradation of misfolded proteins of the endoplasmic reticulum. J. Biol. Chem. 284:2416082–89
    [Google Scholar]
  155. 155.  Sato BK, Schulz D, Do PH, Hampton RY 2009. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell 34:2212–22
    [Google Scholar]
  156. 156.  Neal S, Mak R, Bennett EJ, Hampton R 2017. A Cdc48 “retrochaperone” function is required for the solubility of retrotranslocated, integral membrane endoplasmic reticulum-associated degradation (ERAD-M) substrates. J. Biol. Chem. 292:83112–28
    [Google Scholar]
  157. 157.  Taxis C, Hitt R, Park SH, Deak PM, Kostova Z, Wolf DH 2003. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem. 278:3835903–13
    [Google Scholar]
  158. 158.  Baldridge RD, Rapoport TA 2016. Autoubiquitination of the Hrd1 ligase triggers protein retrotranslocation in ERAD. Cell 166:2394–407
    [Google Scholar]
  159. 159.  Kohlmann S, Schafer A, Wolf DH 2008. Ubiquitin ligase Hul5 is required for fragment-specific substrate degradation in endoplasmic reticulum-associated degradation. J. Biol. Chem. 283:2416374–83
    [Google Scholar]
  160. 160.  Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M et al. 2002. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 10:3495–507
    [Google Scholar]
  161. 161.  Esaki M, Islam MT, Tani N, Ogura T 2017. Deviation of the typical AAA substrate-threading pore prevents fatal protein degradation in yeast Cdc48. Sci. Rep. 7:15475
    [Google Scholar]
  162. 162.  Barthelme D, Sauer RT 2013. Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20 S peptidase. PNAS 110:93327–32
    [Google Scholar]
  163. 163.  Foresti O, Rodriguez-Vaello V, Funaya C, Carvalho P 2014. Quality control of inner nuclear membrane proteins by the Asi complex. Science 346:6210751–55
    [Google Scholar]
  164. 164.  Khmelinskii A, Blaszczak E, Pantazopoulou M, Fischer B, Omnus DJ et al. 2014. Protein quality control at the inner nuclear membrane. Nature 516:7531410–13
    [Google Scholar]
  165. 165.  Deng M, Hochstrasser M 2006. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. Nature 443:7113827–31
    [Google Scholar]
  166. 166.  Meinema AC, Poolman B, Veenhoff LM 2012. The transport of integral membrane proteins across the nuclear pore complex. Nucleus 3:4322–29
    [Google Scholar]
  167. 167.  Zattas D, Berk JM, Kreft SG, Hochstrasser M 2016. A conserved C-terminal element in the yeast Doa10 and human MARCH6 ubiquitin ligases required for selective substrate degradation. J. Biol. Chem. 291:2312105–18
    [Google Scholar]
  168. 168.  Swanson R, Locher M, Hochstrasser M 2001. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev 15:202660–74
    [Google Scholar]
  169. 169.  Kreft SG, Wang L, Hochstrasser M 2006. Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI). J. Biol. Chem. 281:84646–53
    [Google Scholar]
  170. 170.  Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M et al. 2004. Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J. Biol. Chem. 279:3738369–78
    [Google Scholar]
  171. 171.  Boban M, Pantazopoulou M, Schick A, Ljungdahl PO, Foisner R 2014. A nuclear ubiquitin-proteasome pathway targets the inner nuclear membrane protein Asi2 for degradation. J. Cell Sci. 127:3603–13
    [Google Scholar]
  172. 172.  Habeck G, Ebner FA, Shimada-Kreft H, Kreft SG 2015. The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron. J. Cell Biol. 209:2261–73
    [Google Scholar]
  173. 173.  Ast T, Aviram N, Chuartzman SG, Schuldiner M 2014. A cytosolic degradation pathway, prERAD, monitors pre-inserted secretory pathway proteins. J. Cell Sci. 127:3017–23
    [Google Scholar]
  174. 174.  Ravid T, Kreft SG, Hochstrasser M 2006. Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways. EMBO J 25:3533–43
    [Google Scholar]
  175. 175.  Weber A, Cohen I, Popp O, Dittmar G, Reiss Y et al. 2016. Sequential poly-ubiquitylation by specialized conjugating enzymes expands the versatility of a quality control ubiquitin ligase. Mol. Cell 63:5827–39
    [Google Scholar]
  176. 176.  Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL 2008. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell 132:1101–12
    [Google Scholar]
  177. 177.  Han S, Liu Y, Chang A 2007. Cytoplasmic Hsp70 promotes ubiquitination for endoplasmic reticulum-associated degradation of a misfolded mutant of the yeast plasma membrane ATPase, PMA1. J. Biol. Chem. 282:3626140–49
    [Google Scholar]
  178. 178.  Sato BK, Hampton RY 2006. Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis. Yeast 23:14–151053–64
    [Google Scholar]
  179. 179.  Stolz A, Schweizer RS, Schafer A, Wolf DH 2010. Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD. Traffic 11:101363–69
    [Google Scholar]
  180. 180.  Eisele F, Wolf DH 2008. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 582:304143–46
    [Google Scholar]
  181. 181.  Heck JW, Cheung SK, Hampton RY 2010. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. PNAS 107:31106–11
    [Google Scholar]
  182. 182.  Bartel B, Wunning I, Varshavsky A 1990. The recognition component of the N-end rule pathway. EMBO J 9:103179–89
    [Google Scholar]
  183. 183.  Stolz A, Besser S, Hottmann H, Wolf DH 2013. Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum-associated protein degradation. PNAS 110:3815271–76
    [Google Scholar]
  184. 184.  Hampton RY, Garza RM 2009. Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem. Rev. 109:41561–74
    [Google Scholar]
  185. 185.  Song BL, Sever N, DeBose-Boyd RA 2005. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19:6829–40
    [Google Scholar]
  186. 186.  Gardner RG, Shearer AG, Hampton RY 2001. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell. Biol. 21:134276–91
    [Google Scholar]
  187. 187.  Foresti O, Ruggiano A, Hannibal-Bach HK, Ejsing CS, Carvalho P 2013. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. eLife 2:e00953
    [Google Scholar]
  188. 188.  Ruggiano A, Mora G, Buxo L, Carvalho P 2016. Spatial control of lipid droplet proteins by the ERAD ubiquitin ligase Doa10. EMBO J 35:151644–55
    [Google Scholar]
  189. 189.  Smith N, Adle DJ, Zhao M, Qin X, Kim H, Lee J 2016. Endoplasmic reticulum-associated degradation of Pca1p, a polytopic protein, via interaction with the proteasome at the membrane. J. Biol. Chem. 291:2915082–92
    [Google Scholar]
  190. 190.  Avci D, Fuchs S, Schrul B, Fukumori A, Breker M et al. 2014. The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. Mol. Cell 56:5630–40
    [Google Scholar]
  191. 191.  Avci D, Lemberg MK 2015. Clipping or extracting: two ways to membrane protein degradation. Trends Cell Biol 25:10611–22
    [Google Scholar]
  192. 192.  Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W et al. 1996. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:6608432–38
    [Google Scholar]
  193. 193.  Schafer A, Wolf DH 2009. Sec61p is part of the endoplasmic reticulum-associated degradation machinery. EMBO J 28:192874–84
    [Google Scholar]
  194. 194.  Willer M, Forte GM, Stirling CJ 2008. Sec61p is required for ERAD-L: genetic dissection of the translocation and ERAD-L functions of Sec61P using novel derivatives of CPY. J. Biol. Chem. 283:4933883–88
    [Google Scholar]
  195. 195.  Wheeler MC, Gekakis N 2012. Defective ER associated degradation of a model luminal substrate in yeast carrying a mutation in the 4th ER luminal loop of Sec61p. Biochem. Biophys. Res. Commun. 427:4768–73
    [Google Scholar]
  196. 196.  Tretter T, Pereira FP, Ulucan O, Helms V, Allan S et al. 2013. ERAD and protein import defects in a sec61 mutant lacking ER-lumenal loop 7. BMC Cell Biol 14:56
    [Google Scholar]
  197. 197.  Scott DC, Schekman R 2008. Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J. Cell Biol. 181:71095–105
    [Google Scholar]
  198. 198.  Rubenstein EM, Kreft SG, Greenblatt W, Swanson R, Hochstrasser M 2012. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. J. Cell Biol. 197:6761–73
    [Google Scholar]
  199. 199.  Werner ED, Brodsky JL, McCracken AA 1996. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. PNAS 93:2413797–801
    [Google Scholar]
  200. 200.  Pilon M, Schekman R, Romisch K 1997. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:154540–48
    [Google Scholar]
  201. 201.  Brodsky JL, McCracken AA 1999. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10:5507–13
    [Google Scholar]
  202. 202.  Garza RM, Sato BK, Hampton RY 2009. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J. Biol. Chem. 284:2214710–22
    [Google Scholar]
  203. 203.  Wahlman J, DeMartino GN, Skach WR, Bulleid NJ, Brodsky JL, Johnson AE 2007. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129:5943–55
    [Google Scholar]
  204. 204.  Walter J, Urban J, Volkwein C, Sommer T 2001. Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J 20:123124–31
    [Google Scholar]
  205. 205.  Carvalho P, Stanley AM, Rapoport TA 2010. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143:4579–91
    [Google Scholar]
  206. 206.  Stein A, Ruggiano A, Carvalho P, Rapoport TA 2014. Key steps in ERAD of luminal ER proteins reconstituted with purified components. Cell 158:61375–88
    [Google Scholar]
  207. 207.  Ploegh HL. 2007. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature 448:7152435–38
    [Google Scholar]
  208. 208.  Olzmann JA, Kopito RR 2011. Lipid droplet formation is dispensable for endoplasmic reticulum-associated degradation. J. Biol. Chem. 286:3227872–74
    [Google Scholar]
  209. 209.  Beck M, Baumeister W 2016. Cryo-electron tomography: Can it reveal the molecular sociology of cells in atomic detail?. Trends Cell Biol 26:11825–37
    [Google Scholar]
  210. 210.  Xu X, Kanbara K, Azakami H, Kato A 2004. Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue. J. Biochem. 135:5615–18
    [Google Scholar]
  211. 211.  Ton VK, Mandal D, Vahadji C, Rao R 2002. Functional expression in yeast of the human secretory pathway Ca2+, Mn2+-ATPase defective in Hailey-Hailey disease. J. Biol. Chem. 277:86422–27
    [Google Scholar]
  212. 212.  Pelzer C, Kassner I, Matentzoglu K, Singh RK, Wollscheid HP et al. 2007. UBE1L2, a novel E1 enzyme specific for ubiquitin. J. Biol. Chem. 282:3223010–14
    [Google Scholar]
  213. 213.  Lenk U, Yu H, Walter J, Gelman MS, Hartmann E et al. 2002. A role for mammalian Ubc6 homologues in ER-associated protein degradation. J. Cell Sci. 115:3007–14
    [Google Scholar]
  214. 214.  Kuo CL, Goldberg AL 2017. Ubiquitinated proteins promote the association of proteasomes with the deubiquitinating enzyme Usp14 and the ubiquitin ligase Ube3c. PNAS 114:17E3404–13
    [Google Scholar]
  215. 215.  Xia Z, Webster A, Du F, Piatkov K, Ghislain M, Varshavsky A 2008. Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J. Biol. Chem. 283:3524011–28
    [Google Scholar]
  216. 216.  Römisch K, Schekman R 1992. Distinct processes mediate glycoprotein and glycopeptide export from the endoplasmic reticulum in S. cerevisiae. PNAS 89:7227–31
    [Google Scholar]
  217. 217.  Gillece P, Luz JM, Lennarz WJ, de la Cruz FJ, Römisch K. 1999. Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degredation requires interaction with protein disulfide isomerase. J. Cell Biol. 147:7144356
    [Google Scholar]
  218. 218.  Neal S, Jaeger PA, Duttke SH, Benner CK, Glass C 2018. The Dfm1 derlin is required for ERAD retrotranslocation of integral membrane proteins. Mol. Cell 69:306–20
    [Google Scholar]
  219. 219.  Avci D, Lemberg MK 2018. Membrane protein dislocation by the rhomboid pseudoprotease Dfm1: No pore needed?. Mol. Cell 69:161–62
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012749
Loading
/content/journals/10.1146/annurev-biochem-062917-012749
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error