Skip to main content
Log in

Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 14 March 2019

This article has been updated

Abstract

Isotope ratio measurements have been conducted on a series of isotopically distinct pure CO2 gas samples using the technique of dual-inlet isotope ratio mass spectrometry (DI-IRMS). The influence of instrumental parameters, data normalization schemes on the metrological traceability and uncertainty of the sample isotope composition have been characterized. Traceability to the Vienna PeeDee Belemnite(VPDB)-CO2 scale was realized using the pure CO2 isotope reference materials(IRMs) 8562, 8563, and 8564. The uncertainty analyses include contributions associated with the values of iRMs and the repeatability and reproducibility of our measurements. Our DI-IRMS measurement system is demonstrated to have high long-term stability, approaching a precision of 0.001 parts-per-thousand for the 45/44 and 46/44 ion signal ratios. The single- and two-point normalization bias for the iRMs were found to be within their published standard uncertainty values. The values of 13C/12C and 18O/16O isotope ratios are expressed relative to VPDB-CO2 using the \( {\delta}^{13}{C}_{VPDB-{CO}_2} \) and \( {\delta}^{18}{O}_{VPDB-{CO}_2} \) notation, respectively, in parts-per-thousand (‰ or per mil). For the samples, value assignments between (−25 to +2) ‰ and (−33 to −1) ‰ with nominal combined standard uncertainties of (0.05, 0.3) ‰ for \( {\delta}^{13}{C}_{VPDB-{CO}_2} \) and \( {\delta}^{18}{O}_{VPDB-{CO}_2} \), respectively were obtained. These samples are used as laboratory reference to provide anchor points for value assignment of isotope ratios (with VPDB traceability) to pure CO2 samples. Additionally, they serve as potential parent isotopic source material required for the development of gravimetric based iRMs of CO2 in CO2-free dry air in high pressure gas cylinder packages at desired abundance levels and isotopic composition values.

CO2 gas isotope ratio metrology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 14 March 2019

    The authors would like to call the reader���s attention to the fact that unfortunately the formula for the O17 correction parameter ���a��� is reported incorrectly as.

  • 14 March 2019

    The authors would like to call the reader���s attention to the fact that unfortunately the formula for the O17 correction parameter ���a��� is reported incorrectly as.

References

  1. Brewer PJ, Brown RJC, Miller MN, Minarro MD, Murugan A, Milton MJT, et al. Preparation and validation of fully synthetic standard gas mixtures with atmospheric isotopic composition for global CO2 and CH4 monitoring. Anal Chem. 2014;86(3):1887–93.

    Article  CAS  PubMed  Google Scholar 

  2. Lee JY, Yoo HS, Marti K, Moon DM, Lee JB, Kim JS. Effect of carbon isotopic variations on measured CO2 abundances in reference gas mixtures. J Geophys Res-Atmos. 2006;111(D5):8.

    Article  CAS  Google Scholar 

  3. Rhoderick GC, Kitzis DR, Kelley ME, Miller WR, Hall BD, Dlugokencky EJ, et al. Development of a northern continental air standard reference material. Anal Chem. 2016;88(6):3376–85.

    Article  CAS  PubMed  Google Scholar 

  4. Tohjima Y, Katsumata K, Morino I, Mukai H, Machida T, Akama I, et al. Theoretical and experimental evaluation of the isotope effect of NDIR analyzer on atmospheric CO2 measurement. J Geophys Res-Atmos. 2009;114:12.

    Article  CAS  Google Scholar 

  5. Brand WA, Coplen TB, Vogl J, Rosner M, Prohaska T. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl Chem. 2014;86(3):425–67.

    Article  CAS  Google Scholar 

  6. Hut G. Consultants' Group meeting on stable isotope reference samples for geochemical and hydrological investigations. Vienna. Austria: IAEA. September, 1985;1985:16–8.

    Google Scholar 

  7. Verkouteren RM, Klinedinst DB. Value Assignment and Uncertainty Estimation of Selected Light Stable Isotope Reference Materials: RMs 8543-8545, RMs 8562-8564, and RM 8566. NIST Special Publication. 2004;2004 Edition:260–149.

    Google Scholar 

  8. Friedman I, O'Neil J. Compilation of stable isotope fractionation factors of geochemical interest. U. S. Geological Survey, Professional Paper. 1977:440–KK.

  9. Hayes JM. Practice and principles of isotopic measurements in organic chemistry. In: Meinschein WG, editor. Organic Geochemistry of Contemporaneous and Ancient Sedimen: Society of Economic Paleotologists and Mineralogists Tulsa, Okla.; 1983. p. 5–1 to 5–31.

  10. Craig H. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta. 1957;12(1–2):133–49.

    Article  CAS  Google Scholar 

  11. Nier AO. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys Rev. 1950;77(6):789–93.

    Article  CAS  Google Scholar 

  12. Verkouteren RM. Preparation, characterization, and value assignment of carbon dioxide isotopic reference materials: RMs 8562, 8563, and 8564. Anal Chem. 1999;71(20):4740–6.

    Article  CAS  Google Scholar 

  13. Wendeberg M, Richter JM, Rothe M, Brand WA. Jena reference air set (JRAS): a multi-point scale anchor for isotope measurements of CO2 in air. Atmos Meas Tech. 2013;6(3):817–22.

    Article  CAS  Google Scholar 

  14. Moossen H. JRAS-06: keeping up with changing internationaly-distributed stable isotopic reference materials. In: 19th WMO/IAEA meeting on carbon dioxide, other greenhouse gases, and related measurement techniques (GGMT-2017); 2017; Empa Dubendorf. Switzerland: WMO; 2016.

    Google Scholar 

  15. ISO 6142, Gas analysis — Preparation of calibration gas mixtures — Gravimetric method.

  16. ISO 6145 (all parts), Gas analysis — Preparation of calibration gas mixtures using dynamic volumetric methods.

  17. ISO 6144: Gas analysis -- Preparation of calibration gas mixtures -- Static volumetric method.

  18. Gameson L. Proposal for Isotopic Gravimetric Suite of 400 μmol/ mol Methane (and Carbon Dioxide) in Air Balance Gas Standards in the δ13C Range of +20‰ to -90‰. Netherlands: Gas Analysis 2017; Rotterdam; 2017.

    Google Scholar 

  19. Brewer P. Gaseous reference materials to underpin measurements of amount fraction and isotopic composition of greenhouse gases. In: 19th WMO/IAEA meeting on carbon dioxide, other greenhouse gases, and related measurement techniques (GGMT-2017); 2017; Empa Dubendorf. Switzerland: WMO; 2016.

    Google Scholar 

  20. Russe K, Valkiers S, Taylor PDP. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon. Int J Mass Spectrom. 2004;235(3):255–62.

    Article  CAS  Google Scholar 

  21. Valkiers S, Varlam M, Russe K, Berglund M, Taylor P, Wang J, et al. Preparation of synthetic isotope mixtures for the calibration of carbon and oxygen isotope ratio measurements (in carbon dioxide) to the SI. Int J Mass Spectrom. 2007;264(1):10–21.

    Article  CAS  Google Scholar 

  22. Dunn PJH, Malinovsky D, Goenaga-Infante H. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry. Anal Bioanal Chem. 2015;407(11):3169–80.

    Article  CAS  PubMed  Google Scholar 

  23. Brand WA, Assonov SS, Coplen TB. Correction for the O-17 interference in delta (C-13) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC technical report). Pure Appl Chem. 2010;82(8):1719–33.

    Article  CAS  Google Scholar 

  24. Reference Sheet: Certified reference material, IAEA-603 (calcite), stable isotope reference material for δ13C and δ18O. IAEA; 2016.

  25. Chang TL, Li W. A calibrated measurement of the atomic-weight of carbon. Chin Sci Bull. 1990;35(4):290–6.

    Google Scholar 

  26. Kaiser J. Reformulated O-17 correction of mass spectrometric stable isotope measurements in carbon dioxide and a critical appraisal of historic 'absolute' carbon and oxygen isotope ratios. Geochim Cosmochim Acta. 2008;72(5):1312–34.

    Article  CAS  Google Scholar 

  27. Specific requirements for stable isotope calibration. 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), vol. 2015. La Jolla, CA, USA: WMO; 2016.

    Google Scholar 

  28. Brand WA, Rothe M, Sperlich P, Strube M, Wendeberg M. Automated simultaneous measurement of the delta C-13 and delta H-2 values of methane and the delta C-13 and delta O-18 values of carbon dioxide in flask air samples using a new multi cryo-trap/gas chromatography/isotope ratio mass spectrometry system. Rapid Commun Mass Spectrom. 2016;30(13):1523–39.

    Article  CAS  PubMed  Google Scholar 

  29. Ferretti DF, Lowe DC, Martin RJ, Brailsford GW. A new gas chromatograph-isotope ratio mass spectrometry technique for high-precision, N2O-free analysis of delta C-13 and delta O-18 in atmospheric CO2 from small air samples. J Geophys Res-Atmos. 2000;105(D5):6709–18.

    Article  CAS  Google Scholar 

  30. Fisher R, Lowry D, Wilkin O, Sriskantharajah S, Nisbet EG. High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(2):200–8.

    Article  CAS  PubMed  Google Scholar 

  31. Matthews DE, Hayes JM. Isotope-ratio-monitoring gas chromatography-mass spectrometry. Anal Chem. 1978;50(11):1465–73.

    Article  CAS  Google Scholar 

  32. Assonov S, Taylor P, Brenninkmeijer CAM. A system for high-quality CO2 isotope analyses of air samples collected by the CARIBIC Airbus A340-600. Rapid Commun Mass Spectrom. 2009;23(9):1347–63.

    Article  CAS  PubMed  Google Scholar 

  33. Werner RA, Rothe M, Brand WA. Extraction of CO2 from air samples for isotopic analysis and limits to ultra high precision delta O-18 determination in CO2 gas. Rapid Commun Mass Spectrom. 2001;15(22):2152–67.

    Article  CAS  PubMed  Google Scholar 

  34. Leckrone KJ, Hayes JM. Water-induced errors in continuous-flow carbon isotope ratio mass spectrometry. Anal Chem. 1998;70(13):2737–44.

    Article  CAS  PubMed  Google Scholar 

  35. Huntington KW, Eiler JM, Affek HP, Guo W, Bonifacie M, Yeung LY, et al. Methods and limitations of 'clumped' CO2 isotope (Delta(47)) analysis by gas-source isotope ratio mass spectrometry. J Mass Spectrom. 2009;44(9):1318–29.

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh P, Patecki M, Rothe M, Brand WA. Calcite-CO2 mixed intoCO(2)-free air: a new CO2-in-air stable isotope reference material for the VPDB scale. Rapid Commun Mass Spectrom. 2005;19(8):1097–119.

    Article  CAS  Google Scholar 

  37. Meijer HAJ, Neubert REM, Visser GH. Cross contamination in dual inlet isotope ratio mass spectrometers. Int J Mass Spectrom. 2000;198(1–2):45–61.

    Article  CAS  Google Scholar 

  38. Coplen TB, Brand WA, Gehre M, Groning M, Meijer HAJ, Toman B, et al. New guidelines for delta C-13 measurements. Anal Chem. 2006;78(7):2439–41.

    Article  CAS  PubMed  Google Scholar 

  39. Paul D, Skrzypek G, Forizs I. Normalization of measured stable isotopic compositions to isotope reference scales - a review. Rapid Commun Mass Spectrom. 2007;21(18):3006–14.

    Article  CAS  PubMed  Google Scholar 

  40. Verkouteren RM, Lee JN. Web-based interactive data processing: application to stable isotope metrology. Fresenius Journal of Analytical Chemistry. 2001;370(7):803–10.

    Article  CAS  PubMed  Google Scholar 

  41. Report of Investigation. Reference materials 8562–8564. Gaithersburg, MD: National Institute of Standards and Technology; 2007.

    Google Scholar 

  42. Allison CE, Francey, R. J. and Meijer, H. A. J. Recommendations for the reporting of stable isotope measurements of carbon and oxygen in CO2 gas. 1995.

  43. Guides to the expression of uncertainty in measurement (GUM series). 2008 [Available from: http://www.iso.org/sites/JCGM/GUM-introduction.htm.

  44. Merritt DA, Hayes JM. Factors controlling precision and accuracy in isotope-ratio-monitoring mass-spectrometry. Anal Chem. 1994;66(14):2336–47.

    Article  CAS  PubMed  Google Scholar 

  45. Trolier M, White JWC, Tans PP, Masarie KA, Gemery PA. Monitoring the isotopic composition of atmospheric CO2: measurements from the NOAA global air sampling network. J Geophys Res-Atmos. 1996;101(D20):25897–916.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. R. Vocke and W. Tew for carefully reviewing the manuscript. Abneesh Srivastava thanks Dr. Joseph T. Hodges for discussions on absolute isotope ratio metrology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abneesh Srivastava.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Electronic supplementary material

ESM 1

(PDF 246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Michael Verkouteren, R. Metrology for stable isotope reference materials: 13C/12C and 18O/16O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry. Anal Bioanal Chem 410, 4153–4163 (2018). https://doi.org/10.1007/s00216-018-1064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1064-0

Keywords

Navigation