Skip to main content
Log in

Fabrication of zinc-based coordination polymer nanocubes and post-modification through copper decoration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Coordination polymer particles (CPPs) with a high degree of porosity and multi-functional reaction sites are promising for diverse applications. The integration of open sites favorable for the post-modification of CPPs presents a unique opportunity for the rational design of inorganic materials with target-oriented functions. Herein, we report a shape-controllable synthetic protocol for zinc-based coordination polymer nanocubes (Zn-CPNs). In the synthesis, 2,6-bis[(4-carboxyanilino)carbonyl] pyridine ([N3]) ligand is employed as an efficient shape-directing modulator to control the size and shape of Zn-CPNs. More importantly, the [N3] ligand provides metal binding sites suitable for the decoration of other functional metals such as copper ions. The copper-modified Zn-CPNs (Cu_Zn-CPNs) show good activities in a heterogeneous catalytic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, X. W.; Sun, T. J.; Hu, J. L.; Wang, S. D. Composites of metal-organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A 2016, 4, 3584–3616.

    Article  Google Scholar 

  2. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  Google Scholar 

  3. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  Google Scholar 

  4. Yoo, H.; Lee, J.; Kang, P.; Choi, M. G. Synthesis of cobalt cluster-based supramolecular triple-stranded helicates. Dalton Trans. 2015, 44, 14213–14216.

    Article  Google Scholar 

  5. Mai, H. D.; Kang, P.; Kim, J. K.; Yoo, H. A cobalt supramolecular triplestranded helicate-based discrete molecular cage. Sci. Rep. 2017, 7, 43448.

    Article  Google Scholar 

  6. Mai, H. D.; Lee, I.; Lee, S.; Yoo, H. Alkali-metal-mediated frameworks based on bis(2,6-pyridinedicarboxylate)cobalt(II) species. Eur. J. Inorg. Chem. 2017, 2017, 3736–3743.

    Article  Google Scholar 

  7. Qiu, S. L.; Xue, M.; Zhu, G. S. Metal-organic framework membranes: From synthesis to separation application. Chem. Soc. Rev. 2014, 43, 6116–6140.

    Article  Google Scholar 

  8. Mai, H. D.; Le, V. C. T.; Pham, T. M. T.; Ko, J. H.; Yoo, H. Controllable synthesis and structural analysis of nanohybrids with gold multipod nanoparticle cores and ZIF-67 shells (GMN@ ZIF-67). ChemNanoMat 2017, 3, 857–862.

    Article  Google Scholar 

  9. Mai, H. D.; Rafiq, K.; Yoo, H. Nano metal-organic frameworkderived inorganic hybrid nanomaterials: Synthetic strategies and applications. Chem.—Eur. J. 2017, 23, 5631–5651.

    Article  Google Scholar 

  10. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.

    Article  Google Scholar 

  11. Anbia, M.; Hoseini, V.; Sheykhi, S. Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235). J. Ind. Eng. Chem. 2012, 18, 1149–1152.

    Article  Google Scholar 

  12. Cao, Y.; Zhao, Y. X.; Lv, Z. J.; Song, F. J.; Zhong, Q. Preparation and enhanced CO2 adsorption capacity of UiO-66/graphene oxide composites. J. Ind. Eng. Chem. 2015, 27, 102–107.

    Article  Google Scholar 

  13. Melgar, V. M. A.; Kim, J.; Othman, M. R. Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. J. Ind. Eng. Chem. 2015, 28, 1–15.

    Article  Google Scholar 

  14. Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. 2006, 118, 6120–6124.

    Article  Google Scholar 

  15. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

    Article  Google Scholar 

  16. Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Metal-organic frameworks for heterogeneous basic catalysis. Chem. Rev. 2017, 117, 8129–8176.

    Article  Google Scholar 

  17. Nguyen, K. D.; Doan, S. H.; Ngo, A. N. V.; Nguyen, T. T.; Phan, N. T. S. Direct C–N coupling of azoles with ethers via oxidative C–H activation under metal-organic framework catalysis. J. Ind. Eng. Chem. 2016, 44, 136–145.

    Article  Google Scholar 

  18. Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

    Article  Google Scholar 

  19. So, M. C.; Wiederrecht, G. P.; Mondloch, J. E.; Hupp, J. T.; Farha, O. K. Metal-organic framework materials for lightharvesting and energy transfer. Chem. Commun. 2015, 51, 3501–3510.

    Article  Google Scholar 

  20. Howarth, A. J.; Liu, Y. Y.; Hupp, J. T.; Farha, O. K. Metalorganic frameworks for applications in remediation of oxyanion/cation-contaminated water. CrystEngComm 2015, 17, 7245–7253.

    Article  Google Scholar 

  21. Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    Article  Google Scholar 

  22. Liu, Y. L.; Gao, P. F.; Huang, C. Z.; Li, Y. F. Shape-and size-dependent catalysis activities of iron-terephthalic acid metal-organic frameworks. Sci. China Chem. 2015, 58, 1553–1560.

    Article  Google Scholar 

  23. Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Flexible metal-organic frameworks. Chem. Soc. Rev. 2014, 43, 6062–6096.

    Article  Google Scholar 

  24. Jung, S.; Oh, M. Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles. Angew. Chem., Int. Ed. 2008, 47, 2049–2051.

    Article  Google Scholar 

  25. Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nanoand microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

    Article  Google Scholar 

  26. Glotzer, S. C.; Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 2007, 6, 557–562.

    Article  Google Scholar 

  27. Yanai, N.; Granick, S. Directional self-assembly of a colloidal metal-organic framework. Angew. Chem., Int. Ed. 2012, 51, 5638–5641.

    Article  Google Scholar 

  28. Avci, C.; Imaz, I.; Carné-Sánchez, A.; Pariente, J. A.; Tasios, N.; Pérez-Carvajal, J.; Alonso, M. I.; Blanco, A.; Dijkstra, M.; López, C. et al. Self-assembly of polyhedral metal-organic framework particles into three-dimensional ordered superstructures. Nat. Chem. 2018, 10, 78–84.

    Article  Google Scholar 

  29. Furukawa, S.; Reboul, J.; Diring, S.; Sumida, K.; Kitagawa, S. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 2014, 43, 5700–5734.

    Article  Google Scholar 

  30. Spokoyny, A. M.; Kim, D.; Sumrein, A.; Mirkin, C. A. Infinite coordination polymer nano-and microparticle structures. Chem. Soc. Rev. 2009, 38, 1218–1227.

    Article  Google Scholar 

  31. Zheng, G. C.; Chen, Z. W.; Sentosun, K.; Pérez-Juste, I.; Bals, S.; Liz-Marzán, L. M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hong, M. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale 2017, 9, 16645–16651.

    Article  Google Scholar 

  32. Hermes, S.; Witte, T.; Hikov, T.; Zacher, D.; Bahnmüller, S.; Langstein, G.; Huber, K.; Fischer, R. A. Trapping metal-organic framework nanocrystals: An in-situ time-resolved light scattering study on the crystal growth of mof-5 in solution. J. Am. Chem. Soc. 2007, 129, 5324–5325.

    Article  Google Scholar 

  33. Bustamante, E. L.; Fernández, J. L.; Zamaro, J. M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid Interface Sci. 2014, 424, 37–43.

    Article  Google Scholar 

  34. Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem., Int. Ed. 2009, 48, 4739–4743.

    Article  Google Scholar 

  35. Zacher, D.; Schmid, R.; Wöll, C.; Fischer, R. A. Surface chemistry of metal-organic frameworks at the liquid-solid interface. Angew. Chem., Int. Ed. 2011, 50, 176–199.

    Article  Google Scholar 

  36. McGuire, C. V.; Forgan, R. S. The surface chemistry of metalorganic frameworks. Chem. Commun. 2015, 51, 5199–5217.

    Article  Google Scholar 

  37. Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology design of porous coordination polymer crystals by coordination modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513.

    Article  Google Scholar 

  38. Guo, H. L.; Zhu, Y. Z.; Wang, S.; Su, S. Q.; Zhou, L.; Zhang, H. J. Combining coordination modulation with acid-base adjustment for the control over size of metal-organic frameworks. Chem. Mater. 2012, 24, 444–450.

    Article  Google Scholar 

  39. Cai, G. R.; Jiang, H. L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem., Int. Ed. 2017, 56, 563–567.

    Article  Google Scholar 

  40. Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Controlled multiscale synthesis of porous coordination polymer in nano/micro regimes. Chem. Mater. 2010, 22, 4531–4538.

    Article  Google Scholar 

  41. Mai, H. D.; Sung, G. Y.; Yoo, H. Fabrication of nickel oxide nanostructures with high surface area and application for urease-based biosensor for urea detection. RSC Adv. 2015, 5, 78807–78814.

    Article  Google Scholar 

  42. Lee, H. J.; Cho, W.; Jung, S.; Oh, M. Morphology-selective formation and morphology-dependent gas-adsorption properties of coordination polymer particles. Adv. Mater. 2009, 21, 674–677.

    Article  Google Scholar 

  43. Lee, H. J.; Cho, W.; Oh, M. Fluorescent octahedron and rounded-octahedron coordination polymer particles (CPPs). CrystEngComm 2010, 12, 3959–3963.

    Article  Google Scholar 

  44. Park, J.; Chen, Y. P.; Perry, Z.; Li, J. R.; Zhou, H. C. Preparation of core-shell coordination molecular assemblies via the enrichment of structure-directing “codes” of bridging ligands and metathesis of metal units. J. Am. Chem. Soc. 2014, 136, 16895–16901.

    Article  Google Scholar 

  45. Sacarescu, L.; Ardeleanu, R.; Sacarescu, G.; Simionescu, M. Poly(methylsilsesquioxane) with encapsulated Ru(III) complex. J. Macromol. Sci., Part A 2005, 42, 31–40.

    Article  Google Scholar 

  46. Desiraju, G. R. Supramolecular synthons in crystal engineering—A new organic synthesis. Angew. Chem., Int. Ed. 1995, 34, 2311–2327.

    Article  Google Scholar 

  47. Kumar, G.; Kumar, G.; Gupta, R. Manganese-and cobaltbased coordination networks as promising heterogeneous catalysts for olefin epoxidation reactions. Inorg. Chem. 2015, 54, 2603–2615.

    Article  Google Scholar 

  48. Kumar, G.; Gupta, R. Cobalt complexes appended with pand m-carboxylates: Two unique {Co3+−Cd2+} networks and their regioselective and size-selective heterogeneous catalysis. Inorg. Chem. 2012, 51, 5497–5499.

    Article  Google Scholar 

  49. Kumar, G.; Gupta, R. Three-dimensional }Co3+−Zn2+{ and {Co3+−Cd2+} networks originated from carboxylate-rich building blocks: Syntheses, structures, and heterogeneous catalysis. Inorg. Chem. 2013, 52, 10773–10787.

    Article  Google Scholar 

  50. Kumar, G.; Aggarwal, H.; Gupta, R. Cobalt complexes appended with para-and meta-arylcarboxylic acids: Influence of cation, solvent, and symmetry on hydrogen-bonded assemblies. Cryst. Growth Des. 2013, 13, 74–90.

    Article  Google Scholar 

  51. Kumar, G.; Kumar, G.; Gupta, R. Lanthanide-based coordination polymers as promising heterogeneous catalysts for ring-opening reactions. RSC Adv. 2016, 6, 21352–21361.

    Article  Google Scholar 

  52. Kumar, G.; Hussain, F.; Gupta, R. Carbon-sulphur cross coupling reactions catalyzed by nickel-based coordination polymers based on metalloligands. Dalton Trans. 2017, 46, 15023–15031.

    Article  Google Scholar 

  53. Malone, J. F.; Murray, C. M.; Dolan, G. M. Intermolecular interactions in the crystal chemistry of N,N′-diphenylisophthalamide, pyridine-2,6-dicarboxylic acid bisphenylamide, and related compounds. Chem. Mater. 1997, 9, 2983–2989.

    Article  Google Scholar 

  54. Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073.

    Article  Google Scholar 

  55. Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450.

    Article  Google Scholar 

  56. Li, Z.; Zeng, H. C. Surface and bulk integrations of singlelayered Au or Ag nanoparticles onto designated crystal planes {110} or {100} of ZIF-8. Chem. Mater. 2013, 25, 1761–1768.

    Article  Google Scholar 

  57. Oh, M.; Mirkin, C. A. Chemically tailorable colloidal particles from infinite coordination polymers. Nature 2005, 438, 651–654.

    Article  Google Scholar 

  58. Van Vleet, M. J.; Weng, T. T.; Li, X. Y.; Schmidt, J. R. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem. Rev. 2018, 118, 3681–3721.

    Article  Google Scholar 

  59. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

    Article  Google Scholar 

  60. Fang, Z. L.; Bueken, B.; Vos, D. E. D.; Fischer, R. A. Defect-engineered metal-organic frameworks. Angew. Chem., Int. Ed. 2015, 54, 7234–7254.

    Article  Google Scholar 

  61. Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater., in press, DOI: 10.1002/adma.201704501.

  62. Jiang, H. L.; Xu, Q. Porous metal-organic frameworks as platforms for functional applications. Chem. Commun. 2011, 47, 3351–3370.

    Article  Google Scholar 

  63. Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral metalorganic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 2012, 112, 1196–1231.

    Article  Google Scholar 

  64. Chen, W. H.; Vázquez-González, M.; Kozell, A.; Cecconello, A.; Willner, I. Cu2+-modifed metal-organic framework nanoparticles: A peroxidase-mimicking nanoenzyme. Small 2018, 14, 1703149.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Nos. NRF-2015R1A4A1041631 and NRF-2016R1A2B4009281).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyojong Yoo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, N.M., Mai, H.D. & Yoo, H. Fabrication of zinc-based coordination polymer nanocubes and post-modification through copper decoration. Nano Res. 11, 5890–5901 (2018). https://doi.org/10.1007/s12274-018-2098-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2098-5

Keywords

Navigation