Skip to main content

Advertisement

Log in

MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe MnO nanoparticles (NPs) with unique excitation-dependent fluorescence across the entire visible spectrum. These NPs are shown to be efficient optical nanoprobe for multicolor cellular imaging. Synthesis of the NPs is accomplished by a thermal decomposition method. The MnO NPs exhibit a high r1 relaxivity of 4.68 mM−1 s−1 and therefore give an enhanced contrast effect in magnetic resonance (MR) studies of brain glioma. The cytotoxicity assay, hemolysis analysis, and hematoxylin and eosin (H&E) staining tests verify that the MnO NPs are biocompatible. In the authors’ perception, the simultaneous attributes of multicolor fluorescence and excellent MR functionality make this material a promising dual-modal nanoprobe for use in bio-imaging.

A direct method to synthesize fluorescent MnO NPs is reported. The NPs are biocompatible and have been successfully applied for multicolor cellular imaging and MR detection of brain glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672

    Article  CAS  Google Scholar 

  2. Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10(1):3–16

    Article  CAS  Google Scholar 

  3. Garcia J, Tang T, Louie AY (2015) Nanoparticle-based multimodal PET/MRI probes. Nanomedicine 10(8):1343–1359

    Article  CAS  Google Scholar 

  4. Tempany C, Jayender J, Kapur T, Bueno R, Golby A, Agar N, Jolesz FA (2015) Multimodal imaging for improved diagnosis and treatment of cancers. Cancer 121(6):817–827

    Article  Google Scholar 

  5. Keunen O, Taxt T, Grüner R, Lund-Johansen M, Tonn J-C, Pavlin T, Bjerkvig R, Niclou SP, Thorsen F (2014) Multimodal imaging of gliomas in the context of evolving cellular and molecular therapies. Adv Drug Deliv Rev 76:98–115

    Article  CAS  Google Scholar 

  6. Li D, Yang J, Wen S, Shen M, Zheng L, Zhang G, Shi X (2017) Targeted CT/MR dual mode imaging of human hepatocellular carcinoma using lactobionic acid-modified polyethyleneimine-entrapped gold nanoparticles. J Mater Chem B 5(13):2395–2401

    Article  CAS  Google Scholar 

  7. Hsu BYW, Ng M, Tan A, Connell J, Roberts T, Lythgoe M, Zhang Y, Wong SY, Bhakoo K, Seifalian AM (2016) pH-activatable MnO-based fluorescence and magnetic resonance bimodal nanoprobe for cancer imaging. Adv Healthc Mater 5(6):721–729

    Article  CAS  Google Scholar 

  8. Wang YM, Judkewitz B, DiMarzio CA, Yang C (2012) Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light. Nat Commun 3(928):928–936

    Article  Google Scholar 

  9. Caltagirone C, Bettoschi A, Garau A, Montis R (2015) Silica-based nanoparticles: a versatile tool for the development of efficient imaging agents. Chem Soc Rev 44(14):4645–4671

    Article  CAS  Google Scholar 

  10. Zhang L, Liu R, Peng H, Li P, Xu Z, Whittaker AK (2016) The evolution of gadolinium based contrast agents: from single-modality to multi-modality. Nano 8(20):10491–10510

    CAS  Google Scholar 

  11. Bai J, Wang JT-W, Rubio N, Protti A, Heidari H, Elgogary R, Southern P, Al-Jamal WT, Sosabowski J, Shah AM (2016) Triple-modal imaging of magnetically-targeted nanocapsules in solid tumours in vivo. Theranostics 6(3):342–356

    Article  CAS  Google Scholar 

  12. Comby S, Surender EM, Kotova O, Truman LK, Molloy JK, Gunnlaugsson T (2014) Lanthanide-functionalized nanoparticles as MRI and luminescent probes for sensing and/or imaging applications. Inorg Chem 53(4):1867–1879

    Article  CAS  Google Scholar 

  13. Zhu X, Zhou J, Chen M, Shi M, Feng W, Li F (2012) Core–shell Fe3O4@ NaLuF4: Yb, Er/tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials 33(18):4618–4627

    Article  CAS  Google Scholar 

  14. Zhang J, Chen N, Wang H, Gu W, Liu K, Ai P, Yan C, Ye L (2016) Dual-targeting superparamagnetic iron oxide nanoprobes with high and low target density for brain glioma imaging. J Colloid Interface Sci 469:86–92

    Article  CAS  Google Scholar 

  15. Shen J, Li Y, Zhu Y, Yang X, Yao X, Li J, Huang G, Li C (2015) Multifunctional gadolinium-labeled silica-coated Fe3O4 and CuInS2 nanoparticles as a platform for in vivo tri-modality magnetic resonance and fluorescence imaging. J Mater Chem B 3(14):2873–2882

    Article  CAS  Google Scholar 

  16. Xiao D, Lu T, Zeng R, Bi Y (2016) Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances. Microchim Acta 183(10):2655–2675

    Article  CAS  Google Scholar 

  17. Su X, Chan C, Shi J, Tsang M-K, Pan Y, Cheng C, Gerile O, Yang M (2017) A graphene quantum dot@ Fe3O4@ SiO2 based nanoprobe for drug delivery sensing and dual-modal fluorescence and MRI imaging in cancer cells. Biosens Bioelectron 92:489–495

    Article  CAS  Google Scholar 

  18. Kim E-J, Bhuniya S, Lee H, Kim HM, Shin WS, Kim JS, Hong KS (2016) In vivo tracking of phagocytic immune cells using a dual imaging probe with gadolinium-enhanced MRI and near-infrared fluorescence. ACS Appl Mater Interfaces 8(16):10266–10273

    Article  CAS  Google Scholar 

  19. Huynh E, Zheng G (2013) Engineering multifunctional nanoparticles: all-in-one versus one-for-all. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 5(3):250–265

    CAS  Google Scholar 

  20. Gallo J, Alam IS, Lavdas I, Wylezinska-Arridge M, Aboagye EO, Long NJ (2014) RGD-targeted MnO nanoparticles as T1 contrast agents for cancer imaging–the effect of PEG length in vivo. J Mater Chem B 2(7):868–876

    Article  CAS  Google Scholar 

  21. Abbasi AZ, Prasad P, Cai P, He C, Foltz WD, Amini MA, Gordijo CR, Rauth AM, Wu XY (2015) Manganese oxide and docetaxel co-loaded fluorescent polymer nanoparticles for dual modal imaging and chemotherapy of breast cancer. J Control Release 209:186–196

    Article  CAS  Google Scholar 

  22. Zhen Z, Xie J (2012) Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging. Theranostics 2(1):45–54

    Article  CAS  Google Scholar 

  23. Meng J, Zhao Y, Li Z, Wang L, Tian Y (2016) Phase transfer preparation of ultrasmall MnS nanocrystals with a high performance MRI contrast agent. RSC Adv 6(9):6878–6887

    Article  CAS  Google Scholar 

  24. Zhao Y, Meng J, Sheng X, Tian Y (2016) Synthesis of ultrathin MnS shell on ZnS: Mn nanorods by one-step coating and doping for MRI and fluorescent imaging. Adv Optical Mater 4(7):1115–1123

    Article  CAS  Google Scholar 

  25. Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R, Zhang X, Tan W (2014) Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet–aptamer nanoprobe. J Am Chem Soc 136(32):11220–11223

    Article  CAS  Google Scholar 

  26. Chen N, Shao C, Li S, Wang Z, Qu Y, Gu W, Yu C, Ye L (2015) Cy5. 5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas. J Colloid Interface Sci 457:27–34

    Article  CAS  Google Scholar 

  27. Qi Y, Shao C, Gu W, Li F, Deng Y, Li H, Ye L (2013) Carboxylic silane-exchanged manganese ferrite nanoclusters with high relaxivity for magnetic resonance imaging. J Mater Chem B 1 (13):1846–1851

  28. Hu S, Trinchi A, Atkin P, Cole I (2015) Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew Chem Int Ed 54(10):2970–2974

    Article  CAS  Google Scholar 

  29. Su Y, Zhang M, Zhou N, Shao M, Chi C, Yuan P, Zhao C (2017) Preparation of fluorescent N,P-doped carbon dots derived from adenosine 5′-monophosphate for use in multicolor bioimaging of adenocarcinomic human alveolar basal epithelial cells. Microchim Acta 184(3):699–706

    Article  CAS  Google Scholar 

  30. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2017) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 184:343–368

    Article  CAS  Google Scholar 

  31. Xiao Q, Liang Y, Zhu F, Lu S, Huang S (2017) Microwave-assisted one-pot synthesis of highly luminescent N-doped carbon dots for cellular imaging and multi-ion probing. Microchim Acta 184(7):2429–2438

    Article  CAS  Google Scholar 

  32. Fayyadh TK, Ma F, Qin C, Zhang X, Li W, Zhang XE, Zhang Z, Cui Z (2017) Simultaneous detection of multiple viruses in their co-infected cells using multicolour imaging with self-assembled quantum dot probes. Microchim Acta 184(8):2815–2824

    Article  CAS  Google Scholar 

  33. Li J, Jiao Y, Feng L, Zhong Y, Zuo G, Xie A, Dong W (2017) Highly N, P -doped carbon dots: rational design, photoluminescence and cellular imaging. Microchim Acta 184(8):2933–2940

    Article  CAS  Google Scholar 

  34. Syamchand SS, Aparna RS, Sony G (2017) Plasmonic enhancement of the upconversion luminescence in a Yb3+ and Ho3+ co-doped gold-ZnO nanocomposite for use in multimodal imaging. Microchim Acta 184(7):2255–2264

    Article  CAS  Google Scholar 

  35. Parvin N, Mandal TK (2017) Dually emissive P,N-co-doped carbon dots for fluorescent and photoacoustic tissue imaging in living mice. Microchim Acta 184(4):1117–1125

    Article  CAS  Google Scholar 

  36. Li H, Shao FQ, Zou SY, Yang QJ, Huang H, Feng JJ, Wang AJ (2016) Microwave-assisted synthesis of N, P-doped carbon dots for fluorescent cell imaging. Microchim Acta 183(2):821–826

    Article  CAS  Google Scholar 

  37. Li Y, Chen R, Li Y, Sharafudeen K, Liu S, Wu D, Wu Y, Qin X, Qiu J (2015) Folic acid-conjugated chromium(III) doped nanoparticles consisting of mixed oxides of zinc, gallium and tin, and possessing near-infrared and long persistent phosphorescence for targeted imaging of cancer cells. Microchim Acta 182(9–10):1827–1834

    Article  CAS  Google Scholar 

  38. Syamchand SS, Sony G (2015) Multifunctional hydroxyapatite nanoparticles for drug delivery and multimodal molecular imaging. Microchim Acta 182(9–10):1567–1589

    Article  CAS  Google Scholar 

  39. Syamchand SS, Priya S, Sony G (2015) Hydroxyapatite nanocrystals dually doped with fluorescent and paramagnetic labels for bimodal (luminomagnetic) cell imaging. Microchim Acta 182(5–6):1213–1221

    Article  CAS  Google Scholar 

  40. Lu Y, Zhang L, Li J, Su YD, Liu Y, Xu YJ, Dong L, Gao HL, Lin J, Man N (2013) MnO nanocrystals: a platform for integration of MRI and genuine autophagy induction for chemotherapy. Adv Funct Mater 23(12):1534–1546

    Article  CAS  Google Scholar 

  41. Cheng Z, Al Zaki A, Jones IW, Hall HK, Aspinwall CA, Tsourkas A (2014) Stabilized porous liposomes with encapsulated Gd-labeled dextran as a highly efficient MRI contrast agent. Chem Commun 50(19):2502–2504

    Article  CAS  Google Scholar 

  42. Chen N, Shao C, Qu Y, Li S, Gu W, Zheng T, Ye L, Yu C (2014) Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. ACS Appl Mater Interfaces 6(22):19850–19857

    Article  CAS  Google Scholar 

  43. Lai M-H, Lee S, Smith CE, Kim K, Kong H (2014) Tailoring polymersome bilayer permeability improves enhanced permeability and retention effect for bioimaging. ACS Appl Mater Interfaces 6(13):10821–10829

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports from the Key Project from Beijing Commission of Education (KZ201610025022), National Natural Science Foundation of China (81271639) and Beijing Natural Science Foundation (7162023). The instrumental supports from the Core Facility Center (CFC) at Capital Medical University are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Gu or Ling Ye.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 4571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, J., Wang, T., Wang, H. et al. MnO nanoparticles with unique excitation-dependent fluorescence for multicolor cellular imaging and MR imaging of brain glioma. Microchim Acta 185, 244 (2018). https://doi.org/10.1007/s00604-018-2779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2779-5

Keywords

Navigation