Skip to main content
Log in

Myoglobin immobilized on mesoporous carbon foam in a hydrogel (selep) dispersant for voltammetric sensing of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mesoporous carbon foam (MCF) was prepared by via the Pechini method which is facile and template-free. The MCF was characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction and BET surface area analysis. Afterwards, the MCF was dispersed in the natural hydrogel salep to give a composite. Finally, myoglobin was immobilized on the composite and then placed on a glassy carbon electrode (GCE). The modified GCE gives a distinct quasi-reversible redox peak during electroreduction of hydrogen perxide (H2O2). The estimated electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) for redox process of Mb are 0.54 and 2.25 s−1, respectively. The sensor, best operated at −0.2 V (vs. Ag/AgCl), responds to H2O2 in the 1.0 to 80 μM H2O2 concentration range, with a 180 nM limit of detection (at S/N ratio of 3). The technique was applied to the determination of H2O2 in spiked fetal bovine serum samples.

Mesoporous carbon foam (MCF) synthesis, dispersion in Salep solution, preparing the Salep-MCF composite (S-MCF), immobilizing the Mb at S-MCF and preparing Mb/S-MCF composite, Casting the Mb/S-MCF on electrode surface to prepare Mb/S-MCF/GCE and electrochemical behavior of biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yeh P, Kuwana T (1997) Reversible electrode reaction of cytochrome c. Chem Lett 6:1145

    Article  Google Scholar 

  2. Yagati AK, Lee T, Min J, Choi JW (2013) An enzymatic biosensor for hydrogen peroxide based on CeO2 nanostructure electrodeposited on ITO surface. Biosens Bioelectron 47:385

    Article  CAS  Google Scholar 

  3. Liu H, Weng L, Yang C (2017) A review on nanomaterial-based electrochemical sensors for H2O2, H2S and NO inside cells or released by cells. Microchim Acta 184:1267

    Article  CAS  Google Scholar 

  4. Habibi B, Jahanbakhshi M (2015) Direct electrochemistry of hemoglobin in a renewable mesoporous carbon ceramic electrode: a new kind of hydrogen peroxide biosensor. Microchim Acta 182:957

    Article  CAS  Google Scholar 

  5. Wang Y, Han M, Ye X, Wu K, Wu T, Li C (2017) Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Microchim Acta 184:195

    Article  CAS  Google Scholar 

  6. Lu X, Xiao Y, Lei Z, Chen J, Zhang H, Ni Y, Zhang Q (2009) A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. J Mater Chem 19:4707

    Article  CAS  Google Scholar 

  7. Walcarius A (2013) Mesoporous materials and electrochemistry. Chem Soc Rev 42:4098

    Article  CAS  Google Scholar 

  8. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  9. Shi X, Chen Y, Lai Y, Zhang K, Li J, Zhang Z (2017) Metal organic frameworks templated sulfur-doped mesoporous carbons as anode materials for advanced sodium ion batteries. Carbon 123:250

    Article  CAS  Google Scholar 

  10. Tian M, Cui X, Yuan M, Yang J, Ma J, Dong Z (2017) Efficient chemoselective hydrogenation of halogenated nitrobenzenes over an easily prepared γ-Fe2O3-modified mesoporous carbon catalyst. Green Chem 19:1548

    Article  CAS  Google Scholar 

  11. Habibi B, Jahanbakhshi M (2014) A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sensors Actuators B Chem 203:919

    Article  CAS  Google Scholar 

  12. Walcarius A (2017) Recent trends on electrochemical sensors based on ordered mesoporous carbon. Sensors 17(8):1863

    Article  Google Scholar 

  13. Ni Y, Liao Y, Zheng M, Shao S (2017) In-situ growth of Co3O4 nanoparticles on mesoporous carbon nanofibers: a new nanocomposite for nonenzymatic amperometric sensing of H2O2. Microchim Acta 184:3689

    Article  CAS  Google Scholar 

  14. Pechini M., US patent no. 3330697, July

  15. Hassanzadeh-Tabrizi S (2012) Synthesis and luminescence properties of YAG: Ce nanopowder prepared by the Pechini method. Adv Powder Technol 23:324

    Article  CAS  Google Scholar 

  16. Zhao H, Zheng W, Meng ZX, Zhao HM, XX X, Zheng YF (2009) Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24:2352

    Article  CAS  Google Scholar 

  17. Zhang Z, Fu X, Li K, Liu R, Peng D, He L, Wang M, Zhang H, Zhou L (2016) One-step fabrication of electrochemical biosensor based on DNA-modified three-dimensional reduced graphene oxide and chitosan nanocomposite for highly sensitive detection of hg (II). Sensors Actuators B Chem 225:453

    Article  CAS  Google Scholar 

  18. Jahanbakhshi M (2017) Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. Mater Sci Eng C 70:544

    Article  CAS  Google Scholar 

  19. Rezanejade Bardajee G, Hooshyar Z (2014) One-pot synthesis of biocompatible superparamagnetic iron oxide nanoparticles/hydrogel based on salep: characterization and drug delivery. Carbohydr Polym 101:741

    Article  Google Scholar 

  20. Zhan T, Guo Y, Xu L, Zhang W, Sun W, Hou W (2012) Electrochemistry and electrocatalysis of myoglobin intercalated in mg 2 Al–Cl layered double hydroxide and ionic liquid composite material. Talanta 94:189

    Article  CAS  Google Scholar 

  21. Palanisamy S, Karuppiah C, Chen SM, Emmanuel R, Muthukrishnan P, Prakash P (2014) Direct electrochemistry of myoglobin at silver nanoparticles/myoglobin biocomposite: application for hydrogen peroxide sensing. Sensors Actuators B Chem 202:177

    Article  CAS  Google Scholar 

  22. Bond AM (1980) Modern polarographic methods in analytical chemistry, CRC Press Vol: 4

  23. Sun YX, Wang SF (2007) Direct electrochemistry and electrocatalytic characteristic of heme proteins immobilized in a new sol–gel polymer film. Bioelectrochemistry 71:172

    Article  CAS  Google Scholar 

  24. Canbay E, Sahin B, Kiran M, Akyilmaz E (2015) MWCNT–cysteamine–Nafion modified gold electrode based on myoglobin for determination of hydrogen peroxide and nitrite. Bioelectrochemistry 101:126

    Article  CAS  Google Scholar 

  25. Wang J, Wang Y, Cui M, Xu S, Luo X (2017) Enzymeless voltammetric hydrogen peroxide sensor based on the use of PEDOT doped with Prussian blue nanoparticles. Microchim Acta 184:483

    Article  CAS  Google Scholar 

  26. Kafi AKM, Wali Q, Jose R, Biswas TK, Yusoff MM (2017) A glassy carbon electrode modified with SnO2 nanofibers, polyaniline and hemoglobin for improved amperometric sensing of hydrogen peroxide. Microchim Acta 184:4443

    Article  CAS  Google Scholar 

  27. Chen TW, Palanisamy S, Che SM (2016) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a composite consisting of chitosan-encapsulated graphite and platinum nanoparticles. Microchim Acta 183:2861

    Article  CAS  Google Scholar 

  28. Chen J, He P, Bai H, Lei H, Zhang G, Dong F, Ma Y (2016) A glassy carbon electrode modified with a nanocomposite consisting of carbon nanohorns and poly(2-aminopyridine) for non-enzymatic amperometric determination of hydrogen peroxide. Microchim Acta 183:3237

    Article  CAS  Google Scholar 

  29. Mei L, Zhang P, Chen J, Chen D, Quan Y, Gu N, Zhang G, Cui R (2015) Non-enzymatic sensing of glucose and hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite consisting of nanoporous copper, carbon black and nafion. Microchim Acta 183:1359

    Article  Google Scholar 

  30. Zhang C, Zhang Y, Du X, Chen Y, Dong W, Han B, Chen Q (2016) Facile fabrication of Pt-Ag bimetallic nanoparticles decorated reduced graphene oxide for highly sensitive non-enzymatic hydrogen peroxide sensing. Talanta 159:280

    Article  CAS  Google Scholar 

  31. Turunc E, Binzet R, Gumus I, Binzet G, Arsalan H (2017) Green synthesis of silver and palladium nanoparticles using Lithodora hispidula (Sm.) Griseb. (Boraginaceae) and application to the electrocatalytic reduction of hydrogen peroxide. Mater Chem Phys 202:310

    Article  CAS  Google Scholar 

  32. Deac AR, Muresan LM, Cotet LC, Baia L, Turdean GL (2017) Hybrid composite material based on graphene and polyhemin for electrochemical detection of hydrogen peroxide. J Electroanal Chem 802:40

    Article  CAS  Google Scholar 

  33. Huang B, Wang Y, Lu Z, Du H, Ye J (2017) One pot synthesis of palladium-cobalt nanoparticles over carbonnanotubes as a sensitive non-enzymatic sensor for glucose andhydrogen peroxide detection. Sensors Actuators B Chem 252:1016

    Article  CAS  Google Scholar 

  34. Baccarin M, Janegitz BC, Berte R, Vicentini FC, Banks CE, Fatibello-Filho O, Zucolotto V (2016) Direct electrochemistry of hemoglobin and biosensing for hydrogen peroxide using a film containing silver nanoparticles and poly(amidoamine) dendrimer. Mater Sci Eng C 58:97

    Article  CAS  Google Scholar 

  35. Mehta A, Patil S, Bang H, Cho HJ, Seal S (2007) A novel multivalent nanomaterial based hydrogen peroxide sensor. Sens Actuators A 134:146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to the Young Researchers and Elite Club, Islamic Azad University of ShahreKord, ShahreKord, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Jahanbakhshi.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanbakhshi, M. Myoglobin immobilized on mesoporous carbon foam in a hydrogel (selep) dispersant for voltammetric sensing of hydrogen peroxide. Microchim Acta 185, 121 (2018). https://doi.org/10.1007/s00604-017-2654-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2654-9

Keywords

Navigation