Skip to main content
Log in

New frontiers and cutting edge applications in ultra high performance liquid chromatography through latest generation superficially porous particles with particular emphasis to the field of chiral separations

  • Trends
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

About ten years after their introduction to the market (happened in 2006), the so-called second generation superficially porous particles (SPPs) have undoubtedly become the benchmark as well as, very often, the preferred choice for many applications in liquid chromatography (LC), when high efficiency and fast separations are required. This trend has interested practically all kinds of separations, with the only exception of chiral chromatography (at least so far). The technology of production of base SPPs is advanced, relatively simple and widely available. The deep investigation of mass transfer mechanisms under reversed-phase (RP) and normal-phase (NP) conditions for achiral separations has shown the advantages in the use of these particles over their fully porous counterparts. In addition, it has been demonstrated that SPPs are extremely suitable for the preparation of efficient packed beds through slurry packing techniques. However, the research in this field is in continual evolution. In this article, some of the most advanced concepts and modern applications based on the use of SPPs, embracing in particular ultrafast chiral chromatography and the design of SPPs with engineered pore structures or very reduced particle diameter, are revised. We describe modern trends in these fields and focus on those aspect where further innovation and research will be required.

Word cloud of cutting edge applications of superficially porous particles in liquid chromatography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ismail OH, Catani M, Pasti L, Cavazzini A, Ciogli A, Villani C, et al. Experimental evidence of the kinetic performance achievable with columnspacked with new 1.9 μm fully porous particles of narrow particle size distribution. J Chromatogr A 2016;1454:86–92.

    Article  CAS  Google Scholar 

  2. Catani M, Ismail OH, Cavazzini A, Ciogli A, Villani C, Pasti L, et al. Rationale behind the optimum efficiency of columns packed with the new 1.9 μm fully porous particles of narrow particle size distribution. J Chromatogr A 2016;1454:78–85.

    Article  CAS  Google Scholar 

  3. Gritti F, Bell DS, Guiochon G. Particle size distribution and column efficiency. An ongoing debaterevived with 1.9 μm titan-C18 particles. J Chromatogr A 2014;1355:179–92.

    Article  CAS  Google Scholar 

  4. Fekete S, Guillarme D. Kinetic evaluation of new generation of column packed with 1.3 μm core-shell particles. J Chromatogr A 2013;1308:104–13.

    Article  CAS  Google Scholar 

  5. Neue UD. 1997. HPLC Columns: theory, technology and practice. Wiley-VCH.

  6. Kirkland JJ, Langlois TJ. 2007. US Patent application 20070189944 a1.

  7. Gritti F, Leonardis I, Shock D, Stevenson P, Shalliker A, Guiochon G. Performance of columns packed with the new shell particles, kinetex-C18. J Chromatogr A 2010;1217:1589–603.

    Article  CAS  Google Scholar 

  8. Guiochon G, Gritti F. Shell particles, trials, tribulations and triumphs. J Chromatogr A 2011;1218:1915–38.

    Article  CAS  Google Scholar 

  9. Cavazzini A, Gritti F, Kaczmarski K, Marchetti N, Guiochon G. Mass-transfer kinetics in a shell packing materials for chromatography. Anal Chem 2007;79:5972–79.

    Article  CAS  Google Scholar 

  10. Horváth C G, Preiss BA, Lipsky SR. Fast liquid chromatogrpahy: an investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Anal Chem 1967;39:1422–28.

    Article  Google Scholar 

  11. González-Ruiz V, Olives AI, Martín MA. Core-shell particles lead the way to renewing high-performance liquid chromatography. TrAC 2015;64:17–28.

    Google Scholar 

  12. Guiochon G, Gritti F. Theoretical investigation of diffusion along columns packed with fully and superficially porous particles. J Chromatogr A 2011;1218:3476–88.

    Article  Google Scholar 

  13. van Deemter JJ, Zuiderweg FJ, Klinkenberg A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem Eng Sci 1956;5:271–83.

    Article  Google Scholar 

  14. Gritti F, Cavazzini A, Marchetti N, Guiochon G. Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials. J Chromatogr A 2007;1157:289–303.

    Article  CAS  Google Scholar 

  15. Daneyko A, Hlushkou D, Baranau V, Khirevic S, Seidel-Morgenstern A, Tallarek U. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient. J Chromatogr A 2015;1407: 139–56.

    Article  CAS  Google Scholar 

  16. Catani M, Ismail OH, Gasparrini F, Antonelli M, Pasti L, Marchetti N, et al. Recent advancements and future directions of superficially porous chiral stationary phases for ultrafast high-performance enantioseparations. Analyst 2017;142:555–66.

    Article  CAS  Google Scholar 

  17. Gritti F, Leonardis I, Abia J, Guiochon G. Physical properties and structure of fine core-shell particles used as packing materials for chromatography. Relationship between particle characteristics and column performance. J Chromatogr A 2010;1217:3819–43.

    Article  CAS  Google Scholar 

  18. Preti R. Core-shell columns in high-performance liquid chromatography: food analysis applications. International Journal of Analytical Chemistry 2016;2016:1–9.

    Article  Google Scholar 

  19. Gritti F, Guiochon G. Speed-resolution properties of columns packed with new 4.6 μm kinetex-C18 core-shell particles. J Chromatogr A 2013;1280:35–50.

    Article  CAS  Google Scholar 

  20. Oláh E, Fekete S, Fekete J, Ganzler K. Comparative study of new shell-type, sub-2 μm fully porous and monolith stationary phases, focusing on mass transfer resistance. J Chromatogr A 2010;1217:3642–53.

    Article  Google Scholar 

  21. Hayes R, Ahmed A, Edge T, Zhang H. Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A 2014;1357:36–52.

    Article  CAS  Google Scholar 

  22. Jandera P, Hàjek T, Staňkovà M. Monolithic and core-shell columns in comprehensive two-dimensional HPLC: a review. Anal Bioanal Chem 2016;407:139–51.

    Article  Google Scholar 

  23. Marchetti N, Guiochon G. High peak capacity separations of peptides in reversed-phase gradient elution liquid chromatography on columns packed with porous shell particles. J Chromatogr A 2007;1176:206–16.

    Article  CAS  Google Scholar 

  24. Marchetti N, Guiochon JNFG. High peak capacity separations of peptides in reversed-phase gradient elution liquid chromatography on columns packed with porous shell particles. Anal Chem 2008;80:2756–67.

    Article  CAS  Google Scholar 

  25. Ismail OH, Pasti L, Ciogli A, Villani C, Kocergin J, Anderson S, et al. Pirkle-type chiral stationary phase on core–shell and fully porousparticles: are superficially porous particles always the better choice toward ultrafast high-performance enantioseparations? J Chromatogr A 2016;1466:96–104.

    Article  CAS  Google Scholar 

  26. Ismail OH, Antonelli M, Ciogli A, Villani C, Cavazzini A, Catani M, et al. Future perspectives in high efficient and ultrafast chiral liquid chromatography through zwitterionic teicoplanin-based 2-μm superficially porous particles. J Chromatogr A 1520;2017:91–102.

    Google Scholar 

  27. Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Salient sub-second separations. Anal Chem 2016;88:8821–26.

    Article  Google Scholar 

  28. Patel DC, Breitbach ZS, Wahab MF, Barhate CL, Armstrong DW. Gone in seconds: praxis, performance and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal Chem 2015;87:9137–48.

    Article  CAS  Google Scholar 

  29. Thurmann S, Lotter C, Heiland JJ, Chankvetadze B, Belder D. Chip-based high-performance liquid chromatography for high-speed enantioseparations. Anal Chem 2015;87:5568–76.

    Article  CAS  Google Scholar 

  30. Wei TC, Mack A, Chen W, Liu J, Dittmann M, Wang X, et al. Synthesis, characterization and evaluation of a superficially porous particle with unique, elongated pore channels normal to the surface. J Chromatogr A 2016;1440:55–65.

    Article  CAS  Google Scholar 

  31. Deridder S, Catani M, Cavazzini A, Desmet G. A theorethical study on the advantage of core-shell particles with radially-oriented mesopores. J Chromatogr A 2016;1456:137–44.

    Article  CAS  Google Scholar 

  32. Blue LE, Jorgenson JW. 1.1 μm superficially porous particles for liquid chromatography. Part I: synthesis and particle structure characterization. J Chromatogr A 2011;1218:7989–95.

    Article  CAS  Google Scholar 

  33. Blue LE, Jorgenson JW. 1.1 μm superficially porous particles for liquid chromatography. Part II: column packing and chromatographic performance. J Chromatogr A 2015;1380:71–80.

    Article  CAS  Google Scholar 

  34. Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F. Recent applications in chiral high performance liquid chromatography: a review. Anal Chim Acta 2011;706:205–22.

    Article  CAS  Google Scholar 

  35. Reischl RJ, Hartmanova L, Carrozzo M, Huszar M, Frühauf P, Lindner W. Chemoselective and enantioselective analysis of proteinogenic ammino acids utilizing N-derivatization and 1-D enantioselective anion-exchange chromatography in combination with tandem mass spectrometry. J Chromatogr A 2011;1218:8379–87.

    Article  CAS  Google Scholar 

  36. Lai X, Tang W, Ng SC. Novel cyclodextrin chiral stationary phases for high performance liquid chromatography enantioseparation: Effect of cyclodextrin type. J Chromatogr A 2011;1218:5597–601.

    Article  CAS  Google Scholar 

  37. Cancelliere G, Ciogli A, D’Acquarica I, Gasparrini F, Kocergin J, Misiti D, et al. Transition from enantioselective high performance to ultra-high performance liquid chromatography: a case study of a brush-type chiral stationary phase based on sub-5-micron to sub-2-micron silica particles. J Chromatogr A 2010;1217:990–9.

    Article  CAS  Google Scholar 

  38. Cavazzini A, Marchetti N, Guzzinati R, Pierini M, Ciogli A, Kotoni D, et al. Enantioseparation by ultra-high-performance liquid chromatography. TrAC. 2014;63:95–103.

    CAS  Google Scholar 

  39. Lomsadze K, Jibuti G, Farkas T, Chankvetadze B. Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core-shell silica particles. J Chromatogr A 2012;1234:50–55.

    Article  CAS  Google Scholar 

  40. Kharaishvili Q, Jibuti G, Farkas T, Chankvetadze B. Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 2016;1467:163–8.

    Article  CAS  Google Scholar 

  41. Spudeit DA, Dolzan MD, Breitbach ZS, Barber WE, Micke GA, Armstrong DW. Superficially porous particles vs. fully porous particles for bonded high performance liquid chromatography chiral stationary phases: isopropyl cyclofructan 6. J Chromatogr A 2014;1363:89–95.

    Article  CAS  Google Scholar 

  42. Barhate CL, Breitbach ZS, Pinto EC, Regalado EL, Welch CJ, Armstrong DW. Ultrafast separation of fluorinated and desfluorinated pharmaceuticals using highly efficient and selective chiral selectors bonded to superficially porous particles. J Chromatogr A 2015;1426:241–7.

    Article  CAS  Google Scholar 

  43. Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A 2016;1467:2–18.

    Article  CAS  Google Scholar 

  44. Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Superficially porous particles vs. fully porous particles for bonded high performance liquid chromatographic chiral stationary phases: isopropyl cyclofructan 6. J Chromatogr A 2014;1365:124–30.

    Article  Google Scholar 

  45. Wimalasinghe RM, Weatherly CA, Breitbach ZS, Armstrong DW. Hydroxypropyl beta cyclodextrin bonded superficially porous particlebased HILIC stationary phases. J Liq Chromatogr Rel Tech 2016;39:459–64.

    Article  CAS  Google Scholar 

  46. Patel DC, Breitbach ZS, Yu J, Nguyen KA, Armstrong DW. Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal Chim Acta 2017; 963:164–74.

    Article  CAS  Google Scholar 

  47. Pasti L, Marchetti N, Guzzinati R, Catani M, Bosi V, Dondi F, et al. Microscopic models of liquid chromatography: from ensemble-averaged information to resolution of fundamental viewpoint at single-molecule level. TrAC. 2016;81:63–68.

    CAS  Google Scholar 

  48. Dondi F, Cavazzini A, Remelli M. The stochastic theory of chromatography. Adv Chromatogr 1998; 38:51–74.

    CAS  Google Scholar 

  49. Bruns S, Franklin EG, Grinias JP, Godinho JM, Jorgenson JW, Tallarek U. Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 μm particles. J Chromatogr A 2013;1318:189–97.

    Article  CAS  Google Scholar 

  50. Wahab MF, Patel DC, Wimalasinghe RM, Armstrong DW. Fundamental and practical insights on the packing of modern high-efficiency analytical and capillary columns. Anal Chem 2017;89:8177–91.

    Article  CAS  Google Scholar 

  51. Gritti F, Guiochon G. Mass transfer mechanism in chiral reversed phase liquid chromatography. J Chromatogr A 2014;1332:35– 45.

    Article  CAS  Google Scholar 

  52. Gritti F. Impact of straight, unconnected, radially-oriented, and tapered mesopores on column efficiency: a theoretical investigation. J Chromatogr A 1485;2017:70–81.

    Google Scholar 

  53. Fekete S, Ganzler K, Fekete J. Efficiency of the new sub-2 μm core-shell (KinetexTM) column in practice, applied for small and large molecule separation. J Pharm Biomed Anal 2011;54:482–90.

    Article  CAS  Google Scholar 

  54. Omamogho JO, Hanrahan JP, Tobin J, Glennon JD. Structural variation of solid core and thickness of porous shell of 1.7 μm core–shell silica particles on chromatographic performance: narrow bore columns. J Chromatogr A 2011;1218:1942–53.

    Article  CAS  Google Scholar 

  55. Gritti F, Guiochon G. Mass transfer resistance in narrow-bore columns packed with 1.7 μm particles in very high pressure liquid chromatography. J Chromatogr A 2010;1217:5069–83.

    Article  CAS  Google Scholar 

  56. Sanchez AC, Friedlander G, Fekete S, Anspach J, Guillarme D, Chitty M, et al. Pushing the performance limits of reversed-phase ultra high performance liquid chromatography with 1.3 μm core-shell particles. J Chromatogr A 2013;1311:90–97.

    Article  CAS  Google Scholar 

  57. Broeckhoven K, Desmet G. The future of UHPLC: towards higher pressure and/or smaller particles? TrAC 2014;63:65– 75.

    CAS  Google Scholar 

  58. Sciascera L, Ismail OH, Ciogli A, Kotoni D, Cavazzini A, Botta L, et al. Expanding the potential of chiral chromatography for high-throughput screening of large compound libraries by means of sub-2 μm Whelk-O 1 stationary phase in supercritical fluid conditions. J Chromatogr A 2015;1383:160–8.

    Article  CAS  Google Scholar 

  59. Mazzoccanti G, Ismail OH, D’Acquarica I, Vilani C, Manzo C, Wilcox M, et al. Cannabis through the looking glass: chemo- and enantio-selective separation of phytocannabinoids by enantioselective ultra high performance supercritical fluid chromatography. Chem Commun 2017;53:12262–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ercolina Bianchini of the University of Ferrara for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martina Catani or Alberto Cavazzini.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catani, M., Felletti, S., Ismail, O.H. et al. New frontiers and cutting edge applications in ultra high performance liquid chromatography through latest generation superficially porous particles with particular emphasis to the field of chiral separations. Anal Bioanal Chem 410, 2457–2465 (2018). https://doi.org/10.1007/s00216-017-0842-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0842-4

Keywords

Navigation