Skip to main content
Log in

Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although gas-filled microbubbles with high echogenicity are widely applied inclinical ultrasonography, the micron scale particle size impedes their use in the treatment of solid tumors,which are accessible to objects less than several hundred nanometers. We herein propose an unusual approach involving apH-induced core–shell micelle-to-vesicle transition to prepare ultrasound-sensitive polymeric nanospheres (polymersomes in structure) possessing multiple features, including nanosize, monodispersity, and incorporation of a phase-transitional imaging agent into the aqueous lumen. These features are not achievable via the conventional double-emulsion method for polymersome preparation. The nanospheres were constructed based on a novel triblock copolymer with dual pH sensitivity. The liquid-to-gas phase transition of the imaging agent induced by external low-frequency ultrasound may destroy the nanospheres for a rapid drug release, with simultaneous tissue-penetrating drug delivery inside a tumor. These effects may provide new opportunities for the development of an effective cancer therapy with few adverse effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, S. R.; Burns, P. N. Microbubble-enhanced US in body imaging: What role? Radiology 2010, 257, 24–39.

    Article  Google Scholar 

  2. Quaia, E.; Calliada, F.; Bertolotto, M.; Rossi, S.; Garioni, L.; Rosa, L.; Pozzi-Mucelli, R. Characterization of focal liver lesions with contrast-specific US modes and a sulfur hexafluoride-filled microbubble contrast agent: Diagnostic performance and confidence. Radiology 2004, 232, 420–430.

    Article  Google Scholar 

  3. Unger, E. C.; Porter, T.; Culp, W.; Labell, R.; Matsunaga, T.; Zutshi, R. Therapeutic applications of lipid-coated microbubbles. Adv. Drug Delivery Rev. 2004, 56, 1291–1314.

    Article  Google Scholar 

  4. Chen, Y.; Meng, Q. S.; Wu, M. Y.; Wang, S. G.; Xu, P. F.; Chen, H. R.; Li, Y. P.; Zhang, L. X.; Wang, L. Z.; Shi, J. L. Hollow mesoporous organosilica nanoparticles: A generic intelligent framework-hybridization approach for biomedicine. J. Am. Chem. Soc. 2014, 136, 16326–16334.

    Article  Google Scholar 

  5. Hernot, S.; Klibanov, A. L. Microbubbles in ultrasound- triggered drug and gene delivery. Adv. Drug Delivery Rev. 2008, 60, 1153–1166.

    Article  Google Scholar 

  6. Ferrara, K.; Pollard, R.; Borden, M. Ultrasound microbubble contrast agents: Fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447.

    Article  Google Scholar 

  7. Yin, T. H.; Wang, P.; Li, J. G.; Zheng, R. Q.; Zheng, B. W.; Cheng, D.; Li, R. T.; Lai, J. Y.; Shuai, X. T. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 2013, 34, 4532–4543.

    Article  Google Scholar 

  8. Huynh, E.; Lovell, J. F.; Helfield, B. L.; Jeon, M.; Kim, C.; Goertz, D. E.; Wilson, B. C.; Zheng, G. Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J. Am. Chem. Soc. 2012, 134, 16464–16467.

    Article  Google Scholar 

  9. Zhou, Y.; Wang, Z. G.; Chen, Y.; Shen, H. X.; Luo, Z. C.; Li, A.; Wang, Q.; Ran, H. T.; Li, P.; Song, W. X. et al. Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv. Mater. 2013, 25, 4123–4130.

    Article  Google Scholar 

  10. Zhang, J.; Coulston, R. J.; Jones, S. T.; Geng, J.; Scherman, O. A.; Abell, C. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science 2012, 335, 690–694.

    Article  Google Scholar 

  11. Shapiro, M. G.; Goodwill, P. W.; Neogy, A.; Yin, M.; Foster, F. S.; Schaffer, D. V.; Conolly, S. M. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 2014, 9, 311–316.

    Article  Google Scholar 

  12. Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumori-tropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986, 46, 6387–6392.

    Google Scholar 

  13. Li, W. P.; Su, C. H.; Chang, Y. C.; Lin, Y. J.; Yeh, C. S. Ultrasound-induced reactive oxygen species mediated therapy and imaging using a Fenton reaction activable polymersome. ACS Nano 2016, 10, 2017–2027.

    Article  Google Scholar 

  14. Liao, J. F.; Wang, C.; Wang, Y. J.; Luo, F.; Qian, Z. Y. Recent advances in formation, properties, and applications of polymersomes. Curr. Pharm. Design 2012, 18, 3432–3441.

    Article  Google Scholar 

  15. Qi, W.; Ghoroghchian, P. P.; Li, G. Z.; Hammer, D. A.; Therien, M. J. Aqueous self-assembly of poly(ethylene oxide)-block- poly(ε-caprolactone) (PEO-b-PCL) copolymers: Disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles. Nanoscale 2013, 5, 10908–10915.

    Article  Google Scholar 

  16. Nagayasu, A.; Uchiyama, K.; Kiwada, H. The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Delivery Rev. 1999, 40, 75–87.

    Article  Google Scholar 

  17. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  18. Yang, P.; Li, D.; Jin, S.; Ding, J.; Guo, J.; Shi, W. B.; Wang, C. C. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials 2014, 35, 2079–2088.

    Article  Google Scholar 

  19. Ma, M.; Xu, H. X.; Chen, H. R.; Jia, X. Q.; Zhang, K.; Wang, Q.; Zheng, S. G.; Wu, R.; Yao, M. H.; Cai, X. J. et al. A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv. Mater. 2014, 26, 7378–7385.

    Article  Google Scholar 

  20. Niu, D. C.; Wang, X.; Li, Y. S.; Zheng, Y. Y.; Li, F. Q.; Chen, H. R.; Gu, J. L.; Zhao, W. R.; Shi, J. L. Facile synthesis of magnetite/perfluorocarbon co-loaded organic/inorganic hybrid vesicles for dual-modality ultrasound/magnetic resonance imaging and imaging-guided high-intensity focused ultrasound ablation. Adv. Mater. 2013, 25, 2686–2692.

    Article  Google Scholar 

  21. Otsuka, H.; Uchimura, E.; Koshino, H.; Okano, T.; Kataoka, K. Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J. Am. Chem. Soc. 2003, 125, 3493–3502.

    Article  Google Scholar 

  22. Chew, S. A.; Hacker, M. C.; Saraf, A.; Raphael, R. M.; Kasper, F. K.; Mikos, A. G. Altering amine basicities in biodegradable branched polycationic polymers for nonviral gene delivery. Biomacromolecules 2010, 11, 600–609.

    Article  Google Scholar 

  23. Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ε-capr-olactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control Release 2004, 98, 415–426.

    Article  Google Scholar 

  24. Zhao, C. X. Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv. Drug Delivery Rev. 2013, 65, 1420–1446.

    Article  Google Scholar 

  25. Ernsting, M. J.; Murakami, M.; Roy, A.; Li, S. D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control Release 2013, 172, 782–794.

    Article  Google Scholar 

  26. Santos, A. C.; Cunha, J.; Veiga, F.; Cordeiro-da-Silva, A.; Ribeiro, A. J. Ultrasonication of insulin-loaded microgel particles produced by internal gelation: Impact on particle’s size and insulin bioactivity. Carbohydr Polym. 2013, 98, 1397–1408.

    Article  Google Scholar 

  27. Sun, Q. H.; Sun, X. R.; Ma, X. P.; Zhou, Z. X.; Jin, E. L.; Zhang, B.; Shen, Y. Q.; van Kirk, E. A.; Murdoch, W. J.; Lott, J. R. et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater. 2014, 26, 7615–7621.

    Article  Google Scholar 

  28. Perrault, S. D.; Walkey, C.; Jennings, T.; Fischer, H. C.; Chan, W. C. W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009, 9, 1909–1915.

    Article  Google Scholar 

  29. Seo, M.; Matsuura, N. Monodisperse, submicrometer droplets via condensation of microfluidic-generated gas bubbles. Small 2012, 8, 2704–2714.

    Article  Google Scholar 

  30. Lee, J. Y.; Carugo, D.; Crake, C.; Owen, J.; de Saint. V. M.; Seth, A.; Coussios, C.; Stride, E. Nanoparticle-loaded protein-polymer nanodroplets for improved stability and conversion efficiency in ultrasound imaging and drug delivery. Adv. Mater. 2015, 27, 5484–5492.

    Article  Google Scholar 

  31. Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324–332.

    Article  Google Scholar 

  32. [32] Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M. R.; Miyazono, K.; Uesaka, M. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumors depends on size. Nat. Nanotechnol. 2011, 6, 815–825.

    Article  Google Scholar 

  33. [33] Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongqin Zheng or Xintao Shuai.

Electronic supplementary material

12274_2017_1939_MOESM1_ESM.pdf

Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yin, T., Su, Z. et al. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 11, 3710–3721 (2018). https://doi.org/10.1007/s12274-017-1939-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1939-y

Keywords

Navigation