Skip to main content
Log in

Phytochemical-encapsulated nanoplatform for “on-demand” synergistic treatment of multidrug-resistant bacteria

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Though phytochemicals are a promising alternative to traditional antibiotics for combating resistant bacteria, the low water solubility and lack of selectivity seriously hinder their widespread applications. Herein, we constructed a hyaluronidase-activated “on-demand” delivery nanocarrier to encapsulate plant essential oils (PEOs) for the synergistic treatment of multidrug-resistant bacteria. The bioavailability and selectivity of PEOs was enhanced and the antibacterial effect was significantly improved by combining with the photothermal effect of the nanocarrier. This antibacterial system was successfully applied for healing methicillin-resistant Staphylococcus aureus-infected wound with negligible cytotoxicity and biotoxicity in mice. Given the increasing risk of antibiotic resistance, we believe that this phytochemical-encapsulated nanoplatform would provide a long-term solution and be a new powerful tool for skin-associated bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993.

    Article  Google Scholar 

  2. Li, L.-L.; Xu, J.-H.; Qi, G.-B.; Zhao, X. Z.; Yu, F. Q.; Wang, H. Core–shell supramolecular gelatin nanoparticles for adaptive and “on-demand” antibiotic delivery. ACS Nano 2014, 8, 4975–4983.

    Article  Google Scholar 

  3. Alanis, A. J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705.

    Article  Google Scholar 

  4. Zhao, Y. Y.; Chen, Z. L.; Chen, Y. F.; Xu, J.; Li, J. H.; Jiang, X. Y. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J. Am. Chem. Soc. 2013, 135, 12940–12943.

    Article  Google Scholar 

  5. Andersson, D. I.; Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12, 465–478.

    Article  Google Scholar 

  6. Li, W.; Dong, K.; Ren, J. S.; Qu, X. G. A β-lactamaseimprinted responsive hydrogel for the treatment of antibiotic-resistant bacteria. Angew. Chem., Int. Ed. 2016, 128, 8181–8185.

    Article  Google Scholar 

  7. Chellat, M. F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem., Int. Ed. 2016, 55, 6600–6626.

    Article  Google Scholar 

  8. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387.

    Article  Google Scholar 

  9. Bai, H. T.; Lv, F. T.; Liu, L. B.; Wang, S. Supramolecular antibiotic switches: A potential strategy for combating drug resistance. Chem.—Eur. J. 2016, 22, 11114–11121.

    Article  Google Scholar 

  10. Campana, R.; Casettari, L.; Fagioli, L.; Cespi, M.; Bonacucina, G.; Baffone, W. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. Int. J. Food Microbiol. 2017, 241, 132–140.

    Article  Google Scholar 

  11. Duncan, B.; Li, X. N.; Landis, R. F.; Kim, S. T.; Gupta, A.; Wang, L.-S.; Ramanathan, R.; Tang, R.; Boerth, J. A.; Rotello, V. M. Nanoparticle-stabilized capsules for the treatment of bacterial biofilms. ACS Nano 2015, 9, 7775–7782.

    Article  Google Scholar 

  12. Landis, R. F.; Gupta, A.; Lee, Y.-W.; Wang, L.-S.; Golba, B.; Couillaud, B.; Ridolfo, R.; Das, R.; Rotello, V. M. Crosslinked polymer-stabilized nanocomposites for the treatment of bacterial biofilms. ACS Nano 2017, 11, 946–952.

    Article  Google Scholar 

  13. Amato, D. N.; Amato, D. V.; Mavrodi, O. V.; Braasch, D. A.; Walley, S. E.; Douglas, J. R.; Mavrodi, D. V.; Patton, D. L. Destruction of opportunistic pathogens via polymer nanoparticle-mediated release of plant-based antimicrobial payloads. Adv. Healthcare Mater. 2016, 5, 1094–1103.

    Article  Google Scholar 

  14. Wright, G. D. Opportunities for natural products in 21st century antibiotic discovery. Nat. Prod. Rep. 2017, 34, 694–701.

    Article  Google Scholar 

  15. Lewis, K; Ausubel, F. M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507.

    Article  Google Scholar 

  16. Batish, D. R.; Singh, H. P.; Kohli, R. K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. Forest Ecol. Manag. 2008, 256, 2166–2174.

    Article  Google Scholar 

  17. Isman, M. B. Plant essential oils for pest and disease management. Crop Prot. 2000, 19, 603–608.

    Article  Google Scholar 

  18. Liakos, I.; Rizzello, L.; Hajiali, H.; Brunetti, V.; Carzino, R.; Pompa, P. P.; Athanassiou, A.; Mele, E. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J. Mater. Chem. B 2015, 3, 1583–1589.

    Article  Google Scholar 

  19. Feng, K.; Wen, P.; Yang, H.; Li, N.; Lou, W. Y.; Zong, M. H.; Wu, H. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC Adv. 2017, 7, 1572–1580.

    Article  Google Scholar 

  20. Ramasamy, M.; Lee, J.-H.; Lee, J. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. Int. J. Nanomed. 2017, 12, 2813–2828.

    Article  Google Scholar 

  21. Chan, A. C.; Bravo Cadena, M.; Townley, H. E.; Fricker, M. D.; Thompson, I. P. Effective delivery of volatile biocides employing mesoporous silicates for treating biofilms. J. R. Soc. Interface 2017, 14, DOI: 10.1098/rsif.2016.0650.

    Google Scholar 

  22. Kim, B.; Lee, E.; Kim, Y.; Park, S.; Khang, G.; Lee, D. Dual acid-responsive micelle-forming anticancer polymers as new anticancer therapeutics. Adv. Funct. Mater. 2013, 23, 5091–5097.

    Article  Google Scholar 

  23. Gomes, C.; Moreira, R. G.; Castell-Perez, E. Poly (DLlactide- co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J. Food Sci. 2011, 76, N16–N24.

    Article  Google Scholar 

  24. Noh, J.; Kwon, B.; Han, E.; Park, M.; Yang, W.; Cho, W.; Yoo, W.; Khang, G.; Lee, D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun. 2015, 6, 6907.

    Article  Google Scholar 

  25. Mo, R.; Jiang, T. Y.; Di, J.; Tai, W. Y.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 2014, 43, 3595–3629.

    Article  Google Scholar 

  26. Zhong, H.-J.; Lu, L. H.; Leung, K.-H.; Wong, C. C. L.; Peng, C.; Yan, S.-C.; Ma, D.-L.; Cai, Z. W.; Wang, H.-M. D.; Leung, C.-H. An iridium(III)-based irreversible protein–protein interaction inhibitor of BRD4 as a potent anticancer agent. Chem. Sci. 2015, 6, 5400–5408.

    Article  Google Scholar 

  27. Teplensky, M. H.; Fantham, M.; Li, P.; Wang, T. C.; Mehta, J. P.; Young, L. J.; Moghadam, P. Z.; Hupp, J. T.; Farha, O. K.; Kaminski, C. F. et al. Temperature treatment of highly porous zirconium-containing metal–organic frameworks extends drug delivery release. J. Am. Chem. Soc. 2017, 139, 7522–7532.

    Article  Google Scholar 

  28. Samanta, S. K.; Quigley, J.; Vinciguerra, B.; Briken, V.; Isaacs, L. Cucurbit[7]uril enables multi-stimuli-responsive release from the self-assembled hydrophobic phase of a metal organic polyhedron. J. Am. Chem. Soc. 2017, 139, 9066–9074.

    Article  Google Scholar 

  29. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  30. Yang, X. J.; Liu, X.; Liu, Z.; Pu, F.; Ren, J. S.; Qu, X. G. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv. Mater. 2012, 24, 2890–2895.

    Article  Google Scholar 

  31. Ju, E. G.; Li, Z. H.; Liu, Z.; Ren, J. S.; Qu, X. G. Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. ACS Appl. Mat. Interfaces 2014, 6, 4364–4370.

    Article  Google Scholar 

  32. Shen, S.; Tang, H. Y.; Zhang, X. T.; Ren, J. F.; Pang, Z. Q.; Wang, D. G.; Gao, H. L.; Qian, Y.; Jiang, X. G.; Yang, W. L. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 2013, 34, 3150–3158.

    Article  Google Scholar 

  33. Song, Y.-R.; Choi, M.-S.; Choi, G.-W.; Park, I.-K.; Oh, C.-S. Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol. J. 2016, 32, 363–370.

    Article  Google Scholar 

  34. Shen, S. X.; Zhang, T. H.; Yuan, Y.; Lin, S. Y.; Xu, J. Y.; Ye, H. Q. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane. Food Control 2015, 47, 196–202.

    Article  Google Scholar 

  35. Ji, H. W.; Dong, K.; Yan, Z. Q.; Ding, C.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Bacterial hyaluronidase self-triggered prodrug release for chemo-photothermal synergistic treatment of bacterial infection. Small 2016, 12, 6200–6206.

    Article  Google Scholar 

  36. Baier, G.; Cavallaro, A.; Vasilev, K.; Mailänder, V.; Musyanovych, A.; Landfester, K. Enzyme responsive hyaluronic acid nanocapsules containing polyhexanide and their exposure to bacteria to prevent infection. Biomacromolecules 2013, 14, 1103–1112.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21210002, 21431007, 21533008, 21403209, 21601175, and 21673223) and the Jilin Province Science and Technology Development Plan Project (No. 20140101039JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoying Liu, Jinsong Ren or Xiaogang Qu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, P., Zhang, Y., Ran, X. et al. Phytochemical-encapsulated nanoplatform for “on-demand” synergistic treatment of multidrug-resistant bacteria. Nano Res. 11, 3762–3770 (2018). https://doi.org/10.1007/s12274-017-1947-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1947-y

Keywords

Navigation