Skip to main content
Log in

An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Controlling the morphology of the MAPbI3−xCl x active layer has remained a challenge towards advancing perovskite solar cells (PvSCs). Here, we demonstrate that a low temperature additive dripping (AD) treatment step, using diphenyl ether (DPE), can significantly improve the power conversion efficiency (PCE), compared to the control device using chlorobenzene (CB), by 15% up to 16.64%, with a high current density (JSC) of 22.67 mA/cm2. We chose DPE for its small and appropriate dipole moment to adjust the solubility of the MAPbI3−xCl x precursor during the formation of the intermediate phase and the MAPbI3−xCl x phase. The low DPE vapor pressure provides a longer processing window for the removal of residual dimethylformamide (DMF), during the annealing process, for improved perovskite formation. Imaging and X-ray analysis both reveal that the MAPbI3−xCl x film exhibits enlarged grains with increased crystallinity. Together, these improvements result in reduced carrier recombination and hole trap-state density in the MAPbI3−xCl x film, while minimizing the hysteresis problem typical of PvSCs. These results show thatthe AD approach is a promising technique for improving PvSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-J.; Sarkar, A.; Nazeeruddin, M. K. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics 2013, 7, 486–491.

    Article  Google Scholar 

  2. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

    Article  Google Scholar 

  3. Kim, H.; Lim, K.-G.; Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: Roles of interfacial layers. Energy Environ. Sci. 2016, 9, 12–30.

    Article  Google Scholar 

  4. Meng, L.; You, J. B.; Guo, T.-F.; Yang, Y. Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 2015, 49, 155–165.

    Article  Google Scholar 

  5. Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

    Article  Google Scholar 

  6. Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-cond-uctor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.

    Article  Google Scholar 

  7. Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 2013, 6, 1739–1743.

    Article  Google Scholar 

  8. Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 2013, 25, 3727–3732.

    Article  Google Scholar 

  9. Gong, X.; Li, M.; Shi, X. B.; Ma, H.; Wang, Z. K.; Liao, L. S. Controllable perovskite crystallization by water additive for high-performance solar cells. Adv. Funct. Mater. 2015, 25, 6671–6678.

    Article  Google Scholar 

  10. Li, Y.; Xu, Z.; Zhao, S. L.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y. Q.; Li, X. G. et al. Highly efficient p-i-n perovskite solar cells utilizing novel low-temperature solu-tion-processed hole transport materials with linear p-conjugated structure. Small 2016, 12, 4902–4908.

    Article  Google Scholar 

  11. Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

    Article  Google Scholar 

  12. Hsiao, S. Y.; Lin, H. L.; Lee, W. H.; Tsai, W. L.; Chiang, K. M.; Liao, W. Y.; Ren-Wu, C. Z.; Chen, C. Y.; Lin, H. W. Efficient all-vacuum deposited perovskite solar cells by controlling reagent partial pressure in high vacuum. Adv. Mater. 2016, 28, 7013–7019.

    Article  Google Scholar 

  13. Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. 2014, 126, 10056–10061.

    Article  Google Scholar 

  14. Sun, S. Y.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G. C.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407.

    Article  Google Scholar 

  15. Liang, P. W.; Liao, C. Y.; Chueh, C. C.; Zuo, F.; Williams, S. T.; Xin, X. K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystal-lization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.

    Article  Google Scholar 

  16. Song, X.; Wang, W. W.; Sun, P.; Ma, W. L.; Chen, Z.-K. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells. Appl. Phys. Lett. 2015, 106, 033901.

    Article  Google Scholar 

  17. Wei, Q. B.; Yang, D.; Yang, Z.; Ren, X. D.; Liu, Y. C.; Feng, J. S.; Zhu, X. J.; Liu, S. Z. Effective solvent-additive enhanced crystallization and coverage of absorber layers for high effici-ency formamidinium perovskite solar cells. RCS Adv. 2016, 6, 56807–56811.

    Google Scholar 

  18. Kim, H.; Jeong, H.; Lee, J. K. Highly efficient, reproducible, uniform (CH3NH3)PbI3 layer by processing additive dripping for solution-processed planar heterojunction perovskite solar cells. Chem.–Asian J. 2016, 11, 2399–2405.

    Article  Google Scholar 

  19. Li, N.; Brabec, C. J. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ. Sci. 2015, 8, 2902–2909.

    Article  Google Scholar 

  20. Tremolet de Villers, B. J.; O’Hara, K. A.; Ostrowski, D. P.; Biddle, P. H.; Shaheen, S. E.; Chabinyc, M. L.; Olson, D. C.; Kopidakis, N. Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chem. Mater. 2016, 28, 876–884.

    Article  Google Scholar 

  21. Ye, L.; Jing, Y.; Guo, X.; Sun, H.; Zhang, S. Q.; Zhang, M. J.; Huo, L. J.; Hou, J. H. Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J. Phys. Chem. C 2013, 117, 14920–14928.

    Article  Google Scholar 

  22. Lee, S.; Kong, J.; Lee, K. Air-stable organic solar cells using an iodine-free solvent additive. Adv. Energy Mater. 2016, 6, 1600970.

    Article  Google Scholar 

  23. Chae, G. J.; Jeong, S.-H.; Baek, J. H.; Walker, B.; Song, C. K.; Seo, J. H. Improved performance in TIPS-pentacene field effect transistors using solvent additives. J. Mater. Chem. C 2013, 1, 4216–4221.

    Article  Google Scholar 

  24. Zheng, Y. F.; Goh, T.; Fan, P.; Shi, W.; Yu, J. S.; Taylor, D. A. Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive. ACS Appl. Mater. Interfaces 2016, 8, 15724–15731.

    Article  Google Scholar 

  25. Zhao, J.; Zhao, S. L.; Xu, Z.; Qiao, B.; Huang, D.; Zhao, L.; Li, Y.; Zhu, Y. Q.; Wang, P. Revealing the effect of additives with different solubility on the morphology and the donor crystalline structures of organic solar cells. ACS Appl. Mater. Interfaces 2016, 8, 18231–18237.

    Article  Google Scholar 

  26. Nguyen, T. L.; Choi, H.; Ko, S.-J.; Uddin, M. A.; Walker, B.; Yum, S.; Jeong, J.-E.; Yun, M. H.; Shin, T. J.; Hwang, S. et al. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ~300 nm thick conventional single-cell device. Energy Environ. Sci. 2014, 7, 3040–3051.

    Article  Google Scholar 

  27. Choi, H.; Ko, S. J.; Kim, T.; Morin, P. O.; Walker, B.; Lee, B. H.; Leclerc, M.; Kim, J. Y.; Heeger, A. J. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor. Adv. Mater. 2015, 27, 3318–3324.

    Article  Google Scholar 

  28. Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–org-anic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

    Article  Google Scholar 

  29. Fahlbusch, K. G.; Hammerschmidt, F. J.; Panten, J.; Pickenhagen, W.; Schatkowski, D.; Bauer, K.; Garbe, D.; Surburg, H. Flavors and fragrances. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  30. Dualeh, A.; Tétreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.

    Article  Google Scholar 

  31. Wu, Y. Z.; Islam, A.; Yang, X. D.; Qin, C. J.; Liu, J.; Zhang, K.; Peng, W. Q.; Han, L. Y. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014, 7, 2934–2938.

    Article  Google Scholar 

  32. Colella, S.; Mosconi, E.; Fedeli, P.; Listorti, A.; Gazza, F.; Orlandi, F.; Ferro, P.; Besagni, T.; Rizzo, A.; Calestani, G. et al. MAPbI3-xClx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater. 2013, 25, 4613–4618.

    Article  Google Scholar 

  33. Tan, K. W.; Moore, D. T.; Saliba, M.; Sai, H.; Estroff, L. A.; Hanrath, T.; Snaith, H. J.; Wiesner, U. Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 2014, 8, 4730–4739.

    Article  Google Scholar 

  34. Ren, X. D.; Yang, Z.; Yang, D.; Zhang, X.; Cui, D.; Liu, Y. C.; Wei, Q. B.; Fan, H. B.; Liu, S. Z. Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature. Nanoscale 2016, 8, 3816–3822.

    Article  Google Scholar 

  35. Sun, W. H.; Li, Y. L.; Xiao, Y.; Zhao, Z. R.; Ye, S. Y.; Rao, H. X.; Ting, H.; Bian, Z. Q.; Xiao, L. X.; Huang, C. H. et al. An ammonia modified PEDOT:PSS for interfacial engineering in inverted planar perovskite solar cells. Org. Electron. 2017, 46, 22–27.

    Article  Google Scholar 

  36. Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

    Article  Google Scholar 

  37. Wetzelaer, G.-J. A. H.; Max, S.; Araceli Miquel, S.; Cristina, M.; Jorge, Á.; Bolink, J. H. Trap-assisted non-radiative recomb-ination in organic-inorganic perovskite solar cells. Adv. Mater. 2015, 27, 1837–1841.

    Article  Google Scholar 

  38. Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

    Article  Google Scholar 

  39. Yamada, Y.; Nakamura, T.; Endo, M.; Wakamiya, A.; Kanemitsu, Y. Photocarrier recombination dynamics in perov-skite CH3NH3PbI3 for solar cell applications. J. Am. Chem. Soc. 2014, 136, 11610–11613.

    Article  Google Scholar 

  40. Ke, W. J.; Zhao, D. W.; Grice, C. R.; Cimaroli, A. J.; Ge, J.; Tao, H.; Lei, H. W.; Fang, G. J.; Yan, Y. F. Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers. J. Mater. Chem. A 2015, 3, 17971–17976.

    Article  Google Scholar 

  41. Huang, D.; Goh, T.; Kong, J.; Zheng, Y. F.; Zhao, S. L.; Xu, Z.; Taylor, A. D. Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale 2017, 9, 4236–4243.

    Article  Google Scholar 

  42. Heo, J. H.; Song, D. H.; Han, H. J.; Kim, S. Y.; Kim, J. H.; Kim, D.; Shin, H. W.; Ahn, T. K.; Wolf, C.; Lee, T. W. et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater. 2015, 27, 3424–3430.

    Article  Google Scholar 

  43. Wu, B.; Fu, K. W.; Yantara, N.; Xing, G. C.; Sun, S. Y.; Sum, T. C.; Mathews, N. Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis. Adv. Energy Mater. 2015, 5, 1500829.

    Article  Google Scholar 

  44. Unger, E. L.; Hoke, E. T.; Bailie, C. D.; Nguyen, W. H.; Bowring, A. R.; Heumüller, T.; Christoforo, M. G.; McGehee, M. D. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 2014, 7, 3690–3698.

    Article  Google Scholar 

  45. Sanchez, R. S.; Gonzalez-Pedro, V.; Lee, J.-W.; Park, N.-G.; Kang, Y. S.; Mora-Sero, I.; Bisquert, J. Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis. J. Phys. Chem. Lett. 2014, 5, 2357–2363.

    Google Scholar 

  46. Bube, R. H. Trap density determination by space-charge-limited currents. J. Appl. Phys. 1962, 33, 1733–1737.

    Article  Google Scholar 

  47. Poglitsch, A.; Weber, D. Dynamic disorder in methylamm-oniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 1987, 87, 6373–6378.

    Article  Google Scholar 

  48. Xiao, Z. G.; Dong, Q. F.; Bi, C.; Shao, Y. C.; Yuan, Y. B.; Huang, J. S. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 2014, 26, 6503–6509.

    Article  Google Scholar 

  49. Yang, D.; Yang, R. X.; Ren, X. D.; Zhu, X. J.; Yang, Z.; Li, C.; Liu, S. Z. Hysteresis-suppressed high-efficiency flexible perovskite solar cells using solid-state ionic-liquids for effective electron transport. Adv. Mater. 2016, 28, 5206–5213.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Fundamental Research Funds for the Central Universities (No. S16JB00060), the National Science Foundation, NSF- PECASE award (No. CBET-0954985) and the National Natural Science Foundation of China (No. 61575019) for partial support of this work. D. H. also thanks the support from the China Scholarship Council. The AFM SEM used were supported by the Yale Institute for Nanoscience and Quantum Engineering (YINQE) and NSF MRSEC DMR 1119826 for Center for Research on Interface Structures and Phenomena (CRISP). The GIWAXS obtained at 1W1A, BSRF. The authors further thank scientists of Diffuse X-ray Scattering Station in the experiments for the assistance with GIWAXS measurements, as well as Dr. Yuchuan Shao from the Department of Electrical Engineering, Yale University for the useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Xu or André D. Taylor.

Electronic supplementary material

12274_2017_1894_MOESM1_ESM.pdf

An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Goh, T., Zheng, Y. et al. An additive dripping technique using diphenyl ether for tuning perovskite crystallization for high-efficiency solar cells. Nano Res. 11, 2648–2657 (2018). https://doi.org/10.1007/s12274-017-1894-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1894-7

Keywords

Navigation