Skip to main content
Log in

Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Understanding how small molecules interface with amyloid fibrils at the nanoscale is of importance for developing therapeutic treatments against amyloid-based diseases. Here, we show for the first time that human islet amyloid polypeptides (IAPP) in the fibrillar form are polymorphic, ambidextrous, and possess multiple periodicities. Upon interfacing with the small molecule epigallocatechin gallate (EGCG), IAPP aggregation was rendered off-pathway and assumed a form with soft and disordered clusters, while mature IAPP fibrils displayed kinks and branching but conserved the twisted fibril morphology. These nanoscale phenomena resulted from competitive interactions between EGCG and the IAPP amyloidogenic region, as well as end capping of the fibrils by the small molecule. This information is crucial in delineating IAPP toxicity implicated in type 2 diabetes and for developing new inhibitors against amyloidogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knowles, T. P. J.; Vendruscolo, M.; Dobson, C. M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014, 15, 384–396.

    Article  Google Scholar 

  2. Eisenberg, D.; Jucker, M. The amyloid state of proteins in human diseases. Cell 2012, 148, 1188–1203.

  3. Sawaywa, M. R.; Sambashivan, S.; Nelson, R.; Ivanova, M. I.; Sievers, S. A.; Apostol, M. I.; Thompson, M. J.; Balbirnie, M.; Wiltzius, J. J.; McFarlane, H. T. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 2007, 447, 453–457.

    Article  Google Scholar 

  4. Bieschke, J.; Herbst, M.; Wiglenda, T.; Friedrich, R. P.; Boeddrich, A.; Schiele, F.; Kleckers, D.; Lopez del Amo, J. M.; Grü ning, B. A.; Wang, Q. W. et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat. Chem. Biol. 2012, 8, 93–101.

    Article  Google Scholar 

  5. Bieschke, J.; Russ, J.; Friedrich, R. P.; Ehrnhoefer, D. E.; Wobst, H.; Neugebauer, K.; Wanker, E. E. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc. Natl. Acad. Sci. USA 2010, 107, 7710–7715.

    Article  Google Scholar 

  6. Sancini, G.; Dal Magro, R.; Ornaghi, F.; Balducci, C.; Forloni, G.; Gobbi, M.; Salmona, M.; Re, F. Pulmonary administration of functionalized nanoparticles significantly reduces beta-amyloid in the brain of an Alzheimer’s disease murine model. Nano Res. 2016, 9, 2190–2201.

    Article  Google Scholar 

  7. Wang, N.; He, J. W.; Chang, A. K.; Wang, Y.; Xu, L. N.; Chong, X. Y.; Lu, X.; Sun, Y. H.; Xia, X. C.; Li, H. et al. (-)-Epigallocatechin-3-gallate inhibits fibrillogenesis of chicken cystatin. J. Agric. Food Chem. 2015, 63, 1347–1351.

    Article  Google Scholar 

  8. Gurzov, E. N.; Wang, B.; Pilkington, E. H.; Chen, P. Y.; Kakinen, A.; Stanley, W. J.; Litwak, S. A.; Hanssen, E. G.; Davis, T. P.; Ding, F. et al. Inhibition of hIAPP amyloid aggregation and pancreatic β-cell toxicity by OH-terminated PAMAM dendrimer. Small 2016, 12, 1615–1626.

    Article  Google Scholar 

  9. Nedumpully-Govindan, P.; Gurzov, E. N.; Chen, P. Y.; Pilkington, E. H.; Stanley, W. J.; Litwak, S. A.; Davis, T. P.; Ke, P. C.; Ding, F. Graphene oxide inhibits hIAPP amyloid fibrillation and toxicity in insulin-producing NIT-1 cells. Phys. Chem. Chem. Phys. 2016, 18, 94–100.

    Article  Google Scholar 

  10. Mahmoudi, M.; Akhavan, O.; Ghavami, M.; Rezaee, F.; Ghiasi, S. M. A. Graphene oxide strongly inhibits amyloid beta fibrillation. Nanoscale 2012, 4, 7322–7325.

  11. Li, M.; Zhao, A. D.; Dong, K.; Li, W.; Ren, J. S.; Qu, X. G. Chemically exfoliated WS2 nanosheets efficiently inhibit amyloid β-peptide aggregation and can be used for photothermal treatment of Alzheimer’s disease. Nano Res. 2015, 8, 3216–3227.

    Article  Google Scholar 

  12. Nedumpully-Govindan, P.; Kakinen, A.; Pilkington, E. H.; Davis, T. P.; Ke, P. C.; Ding, F. Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci. Rep. 2016, 6, 19463.

    Article  Google Scholar 

  13. Xu, C.; Shi, P.; Li, M.; Ren, J. S.; Qu, X. G. A cytotoxic amyloid oligomer self-triggered and NIR-enhanced amyloidosis therapeutic system. Nano Res. 2015, 8, 2431–2444.

    Article  Google Scholar 

  14. Supattapone, S.; Nguyen, H. O. B.; Cohen, F. E.; Prusiner, S. B.; Scott, M. R. Elimination of prions by branched polyamines and implications for therapeutics. Proc. Natl. Acad. Sci. USA 1999, 96, 14529–14534.

    Article  Google Scholar 

  15. Fischer, M.; Appelhan, D.; Schwar, S.; Klajner, B.; Bryszewsk, M.; Voi, B.; Rogers, M. Influence of surface functionality of poly(propylene imine) dendrimers on protease resistance and propagation of the scrapie prion protein. Biomacromolecules 2010, 11, 1314–1325.

    Article  Google Scholar 

  16. Cegelski, L.; Pinkner, J. S.; Hammer, N. D.; Cusumano, C. K.; Hung, C. S.; Chorell, E.; Åberg, V.; Walker, J. N.; Seed, P. C.; Almqvist, F. et al. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat. Chem. Biol. 2009, 5, 913–919.

    Article  Google Scholar 

  17. Jones, O. G.; Mezzenga, R. Inhibiting, promoting, and preserving stability of functional protein fibrils. Soft Matter 2012, 8, 876–895.

    Article  Google Scholar 

  18. Ehrnhoefer, D. E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Masino, L.; Lurz, R.; Engemann. S.; Pastore, A.; Wanker, E. E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2008, 15, 558–566.

    Article  Google Scholar 

  19. Cao, P.; Raleigh, D. P. Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. Biochemistry 2012, 51, 2670–2683.

    Article  Google Scholar 

  20. Meng, F. L.; Abedini, A.; Plesner, A.; Verchere, C. B.; Raleigh, D. P. The flavanol (-)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 2010, 49, 8127–8133.

    Article  Google Scholar 

  21. Palhano, F. L.; Lee, J.; Grimster, N. P.; Kelly, J. W. Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils. J. Am. Chem. Soc. 2013, 135, 7503–7510.

    Article  Google Scholar 

  22. Engel, M. F. M.; vandenAkker, C. C.; Schleeger, M.; Velikov, K. P.; Koenderink, G. H.; Bonn, M. The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution. J. Am. Chem. Soc. 2012, 134, 14781–14788.

    Article  Google Scholar 

  23. vandenAkker, C. C.; Deckert-Gaudig, T.; Schleeger, M.; Velikov, K. P.; Deckert, V.; Bonn, M.; Koenderink, G. H. Nanoscale heterogeneity of the molecular structure of individual hIAPP amyloid fibrils revealed with tip-enhanced Raman spectroscopy. Small 2015, 11, 4131–4139.

    Article  Google Scholar 

  24. Lara, C.; Gourdin-Bertin, S.; Adamcik, J.; Bolisetty, S.; Mezzenga, R. Self-assembly of ovalbumin into amyloid and non-amyloid fibrils. Biomacromolecules 2012, 13, 4213–4221.

    Article  Google Scholar 

  25. Granqvist, C. G.; Buhrman, R. A. Ultrafine metal particles. J. Appl. Phys. 1976, 47, 2200–2219.

    Article  Google Scholar 

  26. Usov, I.; Adamcik, J.; Mezzenga, R. Polymorphism in bovine serum albumin fibrils: Morphology and statistical analysis. Faraday Discuss. 2013, 166, 151–162.

    Article  Google Scholar 

  27. Usov, I.; Mezzenga, R. FiberApp: An open-source software for tracking and analyzing polymers, filaments, biomacromolecules, and fibrous objects. Macromolecules 2015, 48, 1269–1280.

    Article  Google Scholar 

  28. Adamcik, J.; Jung, J. M.; Flakowski, J.; De Los Rios, P.; Dietler, G.; Mezzenga, R. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol. 2010, 5, 423–428.

    Article  Google Scholar 

  29. Bolisetty, S.; Adamcik, J.; Mezzenga, R. Snapshots of fibrillation and aggregation kinetics in multistranded amyloid β-lactoglobulin fibrils. Soft Matter 2011, 7, 493–499.

    Article  Google Scholar 

  30. Lara, C.; Adamcik, J.; Jordens, S.; Mezzenga, R. General self-assembly mechanism converting hydrolyzed globular proteins into giant multistranded amyloid ribbons. Biomacromolecules 2011, 12, 1868–1875.

    Article  Google Scholar 

  31. Jeong, J. S.; Ansaloni, A.; Mezzenga, R.; Lashuel, H. A.; Dietler, G. Novel mechanistic insight into the molecular basis of amyloid polymorphism and secondary nucleation during amyloid formation. J. Mol. Biol. 2013, 425, 1765–1781.

    Article  Google Scholar 

  32. Tycko, R. Molecular structure of amyloid fibrils: Insights from solid-state NMR. Q. Rev. Biophys. 2006, 39, 1–55.

    Article  Google Scholar 

  33. Luca, S.; Yau, W. M.; Leapman, R.; Tycko, R. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid-state NMR. Biochemistry 2007, 46, 13505–13522.

    Article  Google Scholar 

  34. Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003, 300, 625–627.

    Article  Google Scholar 

  35. Knowles, T. P. J.; Waudby, C. A.; Devlin, G. L.; Cohen, S. I. C.; Aguzzi, A.; Vendruscolo, M.; Terentjev, E. M.; Welland, M. E.; Dobso. C. M. An analytical solution to the kinetics of breakable filament assembly. Science 2009, 326, 1533–1537.

    Article  Google Scholar 

  36. Sang, S. M.; Lee, M.-J.; Hou, Z.; Ho, C. T.; Yang, C. S. Stability of tea polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J. Agric. Food Chem. 2005, 53, 9478–9484.

    Article  Google Scholar 

  37. Knowles, T. P. J.; Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 2011, 6, 469–479.

    Article  Google Scholar 

  38. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids. Clarendon Press: Oxford, 1989.

    Google Scholar 

  39. Rapaport, D. C. The Art of Molecular Dynamics Simulation. 2nd ed.; Bar-Ilan University: Israel, 2004.

    Book  Google Scholar 

  40. Ding, F.; Dokholyan, N. V. Emergence of protein fold families through rational design. PLoS Comput. Biol. 2006, 2, e85.

    Article  Google Scholar 

  41. Yin, S. Y.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N. V. MedusaScore: An accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model. 2008, 48, 1656–1662.

    Article  Google Scholar 

  42. Neria, E.; Fischer, S.; Karplus, M. Simulation of activation free energies in molecular systems. J. Chem. Phys. 1996, 105, 1902–1921.

    Article  Google Scholar 

  43. Lazaridis, T.; Karplus, M. Effective energy functions for protein structure prediction. Curr. Opin. Struct. Biol. 2000, 10, 139–145.

    Article  Google Scholar 

  44. Andersen, H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 1980, 72, 2384–2393.

    Article  Google Scholar 

  45. Ding, F.; Dokholyan, N. V. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark. J. Chem. Inf. Model. 2013, 53, 1871–1879.

    Article  Google Scholar 

  46. Nedumpully-Govindan, P.; Jemec, D. B.; Ding, F. CSAR benchmark of flexible MedusaDock in affinity prediction and nativelike binding pose selection. J. Chem. Inf. Model. 2016, 56, 1042–1052.

    Article  Google Scholar 

  47. Manning, G. S. Limiting Laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 1969, 51, 924–933.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ARC Project No. CE140100036 (T. P. D.), NSF CAREER grant CBET- 1553945 (F. D.), NIH 1R35GM119691 (F. D.), and an internal grant from Monash Institute of Pharmaceutical Sciences (P. C. K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raffaele Mezzenga, Thomas P. Davis, Feng Ding or Pu Chun Ke.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakinen, A., Adamcik, J., Wang, B. et al. Nanoscale inhibition of polymorphic and ambidextrous IAPP amyloid aggregation with small molecules. Nano Res. 11, 3636–3647 (2018). https://doi.org/10.1007/s12274-017-1930-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1930-7

Keywords

Navigation