Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

NOTCH1 mutations are associated with high CD49d expression in chronic lymphocytic leukemia: link between the NOTCH1 and the NF-κB pathways

Abstract

In chronic lymphocytic leukemia (CLL), stabilizing mutations of NOTCH1, affecting up to 10–15% of cases, have been associated to poor prognosis, disease progression and refractoriness to chemotherapy. NOTCH1 mutations are significantly overrepresented in trisomy 12 CLL, a disease subset frequently expressing CD49d, the α4 chain of the very-late-activation-4 integrin, a well-known key regulator of microenviromental interactions, and negative prognosticator in CLL. In the present study, by analysing a wide cohort of 1180 CLL, we observed a very strong association between the presence of NOTCH1 mutations and the expression of CD49d (P<0.0001), occurring also outside the trisomy 12 CLL subset. Using both the MEC-1 CLL-like cells stably transfected with the NOTCH1 intracellular domain and primary CLL cells bearing a mutated or wild-type NOTCH1 gene configuration, we provide evidence that triggering of the NOTCH1 pathway resulted in a positive CD49d expression regulation, which was driven by a NOTCH1-dependent activation of nuclear factot-κB (NF-κB). Consistently, pharmacological inhibition of the NOTCH1 and/or of the NF-κB pathways resulted in impaired NF-κB nuclear translocation with consequent down-modulation of CD49d expression. Altogether, our data link for the first time NOTCH1 mutations to CD49d expression regulation through the involvement of the NF-κB pathway in CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121: 1403–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroeter EH, Kisslinger JA, Kopan R . Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393: 382–386.

    Article  CAS  PubMed  Google Scholar 

  5. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A . Signalling downstream of activated mammalian Notch. Nature 1995; 377: 355–358.

    Article  CAS  PubMed  Google Scholar 

  6. Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A . Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci USA 2006; 103: 9262–9267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E et al. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 2015; 30: 182–189.

    Article  PubMed  Google Scholar 

  8. Arruga F, Gizdic B, Serra S, Vaisitti T, Ciardullo C, Coscia M et al. Functional impact of NOTCH1 mutations in chronic lymphocytic leukemia. Leukemia 2014; 28: 1060–1070.

    Article  CAS  PubMed  Google Scholar 

  9. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  10. Rosati E, Sabatini R, Rampino G, Tabilio A, Di IM, Fettucciari K et al. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 2009; 113: 856–865.

    Article  CAS  PubMed  Google Scholar 

  11. Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015; 526: 519–524.

    Article  CAS  PubMed  Google Scholar 

  12. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood 2012; 119: 329–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Athanasiadou A, Stamatopoulos K, Tsompanakou A, Gaitatzi M, Kalogiannidis P, Anagnostopoulos A et al. Clinical, immunophenotypic, and molecular profiling of trisomy 12 in chronic lymphocytic leukemia and comparison with other karyotypic subgroups defined by cytogenetic analysis. Cancer Genet Cytogenet 2006; 168: 109–119.

    Article  CAS  PubMed  Google Scholar 

  15. Tsimberidou AM, Keating MJ . Richter syndrome: biology, incidence, and therapeutic strategies. Cancer 2005; 103: 216–228.

    Article  CAS  PubMed  Google Scholar 

  16. Zucchetto A, Caldana C, Benedetti D, Tissino E, Rossi FM, Hutterer E et al. CD49d is overexpressed by trisomy 12 chronic lymphocytic leukemia cells: evidence for a methylation-dependent regulation mechanism. Blood 2013; 122: 3317–3321.

    Article  CAS  PubMed  Google Scholar 

  17. Bulian P, Shanafelt TD, Fegan C, Zucchetto A, Cro L, Nuckel H et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J Clin Oncol 2014; 32: 897–904.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 2008; 111: 865–873.

    Article  CAS  PubMed  Google Scholar 

  19. Dal Bo M, Tissino E, Benedetti D, Caldana C, Bomben R, Del Poeta G et al. Microenvironmental interactions in chronic lymphocytic leukemia: the master role of CD49d. Semin Hematol 2014; 51: 168–176.

    Article  Google Scholar 

  20. Matutes E, Owusu-Ankomah K, Morilla R, Garcia MJ, Houlihan A, Que TH et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    CAS  PubMed  Google Scholar 

  21. Bomben R, Dal Bo M, Capello D, Benedetti D, Marconi D, Zucchetto A et al. Comprehensive characterization of IGHV3-21-expressing B-cell chronic lymphocytic leukemia: an Italian multicenter study. Blood 2007; 109: 2989–2998.

    CAS  PubMed  Google Scholar 

  22. Bittolo T, Pozzo F, Bomben R, D'Agaro T, Bravin V, Bulian P et al. Mutations in the 3' untranslated region (3' UTR) of NOTCH1 are associated with low CD20 expression levels in chronic lymphocytic leukemia. Haematologica 2017; 102: e305–e309, epub ahead of print 18 April 2017 doi:10.1038/leu.2017.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pozzo F, Bittolo T, Vendramini E, Bomben R, Bulian P, Rossi FM et al. NOTCH1-mutated chronic lymphocytic leukemia cells are characterized by a MYC-related overexpression of nucleophosmin 1 and ribosome-associated components. Leukemia 2017.

  24. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 2016; 127: 2122–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014; 123: 2139–2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riches JC, O'Donovan CJ, Kingdon SJ, McClanahan F, Clear AJ, Neuberg DS et al. Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signaling that is modulated by NOTCH1 mutations. Blood 2014; 123: 4101–4110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Josien H . Recent advances in the development of gamma-secretase inhibitors. Curr Opin Drug Discov Dev 2002; 5: 513–525.

    CAS  Google Scholar 

  28. Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J et al. Calcium depletion dissociates and activates heterodimeric notch receptors. Mol Cell Biol 2000; 20: 1825–1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Espinosa L, Cathelin S, D'Altri T, Trimarchi T, Statnikov A, Guiu J et al. The Notch/Hes1 pathway sustains NF-kappaB activation through CYLD repression in T cell leukemia. Cancer Cell 2010; 18: 268–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu ZS, Zhang JS, Zhang JY, Wu SQ, Xiong DL, Chen HJ et al. Constitutive activation of NF-kappaB signaling by NOTCH1 mutations in chronic lymphocytic leukemia. Oncol Rep 2015; 33: 1609–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurtova AV, Balakrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP et al. Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood 2009; 114: 4441–4450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ntziachristos P, Shan Lim JS, Sage J, Aifantis I . From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell 2014; 25: 318–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burger JA . Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program 2011; 2011: 96–103.

    Article  PubMed  Google Scholar 

  35. Miyake K, Yamashita Y, Kimoto M . A calcium- or manganese-dependent epitope on the integrin beta 1 chain recognized by a unique mAb. Int Immunol 1994; 6: 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  36. Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE et al. Notch1 augments NF-kappaB activity by facilitating its nuclear retention. EMBO J 2006; 25: 129–138.

    Article  CAS  PubMed  Google Scholar 

  37. Burke JR, Pattoli MA, Gregor KR, Brassil PJ, MacMaster JF, McIntyre KW et al. BMS-345541 is a highly selective inhibitor of I kappa B kinase that binds at an allosteric site of the enzyme and blocks NF-kappa B-dependent transcription in mice. J Biol Chem 2003; 278: 1450–1456.

    Article  CAS  PubMed  Google Scholar 

  38. Lopez-Guerra M, Roue G, Perez-Galan P, Alonso R, Villamor N, Montserrat E et al. p65 activity and ZAP-70 status predict the sensitivity of chronic lymphocytic leukemia cells to the selective IkappaB kinase inhibitor BMS-345541. Clin Cancer Res 2009; 15: 2767–2776.

    Article  CAS  PubMed  Google Scholar 

  39. Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F et al. Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 2007; 13: 70–77.

    Article  CAS  PubMed  Google Scholar 

  40. Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal BM, Marconi D et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 2009; 69: 4001–4009.

    Article  CAS  PubMed  Google Scholar 

  41. Buggins AG, Pepper C, Patten PE, Hewamana S, Gohil S, Moorhead J et al. Interaction with vascular endothelium enhances survival in primary chronic lymphocytic leukemia cells via NF-kappaB activation and de novo gene transcription. Cancer Res 2010; 70: 7523–7533.

    Article  CAS  PubMed  Google Scholar 

  42. Fabbri G, Holmes AB, Viganotti M, Scuoppo C, Belver L, Herranz D et al. Common nonmutational NOTCH1 activation in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2017; 114: E2911–E2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dal Bo M, Bulian P, Bomben R, Zucchetto A, Rossi FM, Pozzo F et al. CD49d prevails over the novel recurrent mutations as independent prognosticator of overall survival in chronic lymphocytic leukemia. Leukemia 2016; 30: 2011–2018.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Associazione Italiana Ricerca Cancro (AIRC), IG-17622 and Special-Program-Molecular-Clinical-Oncology 5 × 1000 No.10007; RF-2011-02349712, GR-2011-02346826, GR-2011-02347441, GR-2011-02351370, Ministero della Salute, Rome, Italy; Ricerca clinica/traslazionale/di base/epidemiologica/organizzativa, Regione FVG (‘Linfo-Check’ Project), Trieste, Italy; Associazione Italiana contro le Leucemie, linfomi e mielomi (AIL), Venezia Section, Pramaggiore Group, Italy; Fondazione per la Vita di Pordenone, Italy; and 5 × 1000 Intramural Program, Centro di Riferimento Oncologico, Aviano, Italy. We thank our patients for participating and donating samples to make this research possible.

Author contributions

AZ and VG designed the study, coordinated the experiments and wrote the manuscript. DB and ET performed the experiments, analysed the data and contributed to write the manuscript. FP, TB, CC, CP, DM, VB, TD, FMR, RB and MDB performed the experiments and contributed to characterize samples and to data analysis. ES, FZ, GP, FDR, GDP, DR and GG contributed to molecular characterization of samples and provided well characterized biological samples. All the authors commented and contributed to write the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V Gattei or A Zucchetto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, D., Tissino, E., Pozzo, F. et al. NOTCH1 mutations are associated with high CD49d expression in chronic lymphocytic leukemia: link between the NOTCH1 and the NF-κB pathways. Leukemia 32, 654–662 (2018). https://doi.org/10.1038/leu.2017.296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.296

This article is cited by

Search

Quick links