Skip to main content
Log in

Electrical contacts in monolayer blue phosphorene devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Semiconducting monolayer (ML) blue phosphorene (BlueP) shares similar stability with ML black phosphorene (BP), and it has recently been grown on an Au surface. Potential ML BlueP devices often require direct contact with metal to enable the injection of carriers. Using ab initio electronic structure calculations and quantum transport simulations, for the first time, we perform a systematic study of the interfacial properties of ML BlueP in contact with metals spanning a wide work function range in a field effect transistor (FET) configuration. ML BlueP has undergone metallization owing to strong interaction with five metals. There is a strong Fermi level pinning (FLP) in the ML BlueP FETs due to the metal-induced gap states (MIGS) with a pinning factor of 0.42. ML BlueP forms n-type Schottky contact with Sc, Ag, and Pt electrodes with electron Schottky barrier heights (SBHs) of 0.22, 0.22, and 0.80 eV, respectively, and p-type Schottky contact with Au and Pd electrodes with hole SBHs of 0.61 and 0.79 eV, respectively. The MIGS are eliminated by inserting graphene between ML BlueP and the metal electrode, accompanied by a transition from a strong FLP to a weak FLP. Our study not only provides insight into the ML BlueP–metal interfaces, but also helps in the design of ML BlueP devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  2. Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phy. Rev. X 2014, 4, 031005.

    Google Scholar 

  3. Schwierz, F.; Pezoldt, J.; Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 2015, 7, 8261–8283.

    Article  Google Scholar 

  4. Das, S.; Zhang, W.; Demarteau, M.; Hoffmann, A.; Dubey, M.; Roelofs, A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14, 5733–5739.

    Article  Google Scholar 

  5. Guan, J.; Zhu, Z.; Tománek, D. Phase coexistence and metalinsulator transition in few-layer phosphorene: A computational study. Phys. Rev. Lett. 2014, 113, 046804.

    Article  Google Scholar 

  6. Xiao, J.; Long, M. Q.; Zhang, X. J.; Ouyang, J.; Xu, H.; Gao, Y. L. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Sci. Rep. 2015, 5, 9961.

    Article  Google Scholar 

  7. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  Google Scholar 

  8. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  Google Scholar 

  9. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  Google Scholar 

  10. Zhu, Z.; Tománek, D. Semiconducting layered blue phosphorus: A computational study. Phys. Rev. Lett. 2014, 112, 176802.

    Article  Google Scholar 

  11. Zhang, J. L.; Zhao, S. T.; Han, C.; Wang, Z. Z.; Zhong, S.; Sun, S.; Guo, R.; Zhou, X.; Gu, C. D.; Yuan, K. D. et al. Epitaxial growth of single layer blue phosphorus: A new phase of two-dimensional phosphorus. Nano Lett. 2016, 16, 4903–4908.

    Article  Google Scholar 

  12. Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

    Article  Google Scholar 

  13. Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metalsemiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2016, 2, e1600069.

    Article  Google Scholar 

  14. Quhe, R.; Peng, X. Y.; Pan, Y. Y.; Ye, M.; Wang, Y. Y.; Zhang, H.; Feng, S. Y.; Zhang, Q. X.; Shi, J. J.; Yang, J. B. et al. Can a black phosphorus Schottky barrier transistor be good enough? ACS Appl. Mater. Interfaces 2017, 9, 3959–3966.

    Article  Google Scholar 

  15. Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

    Article  Google Scholar 

  16. Farmanbar, M.; Brocks, G. Controlling the Schottky barrier at MoS2/metal contacts by inserting a B Nmonolayer. Phys. Rev. B 2015, 91, 161304.

    Article  Google Scholar 

  17. Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Lowresistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902.

    Article  Google Scholar 

  18. Kim, A. R.; Kim, Y.; Nam, J.; Chung, H. S.; Kim, D. J.; Kwon, J. D.; Park, S. W.; Park, J.; Choi, S. Y.; Lee, B. H. et al. Alloyed 2D metal-semiconductor atomic layer junctions. Nano Lett. 2016, 16, 1890–1895.

    Article  Google Scholar 

  19. Liu, Y. Y.; Xiao, H.; Goddard III, W. A. Schottky-barrierfree contacts with two-dimensional semiconductors by surfaceengineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856.

    Article  Google Scholar 

  20. Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H,; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

    Article  Google Scholar 

  21. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    Article  Google Scholar 

  22. Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 2015, 15, 3030–3034.

    Article  Google Scholar 

  23. Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Neto, A. H. C.; Özyilmaz, B. Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. ACS Nano 2015, 9, 4138–4145.

    Article  Google Scholar 

  24. Wang, Y. Y.; Li, J. Z.; Xiong, J. H.; Pan, Y. Y.; Ye, M.; Guo, Y.; Zhang, H.; Quhe, R.; Lu, J. Does the Dirac cone of germanene exist on metal substrates? Phys. Chem. Chem. Phys. 2016, 18, 19451–19456.

    Article  Google Scholar 

  25. Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene–metal contacts. Chem. Mater. 2016, 28, 2100–2109.

    Article  Google Scholar 

  26. Pan, Y. Y.; Li, S. B.; Ye, M.; Quhe, R.; Song, Z. G.; Wang, Y. Y.; Zheng, J. X.; Pan, F.; Guo, W. L.; Yang, J. B. et al. Interfacial properties of monolayer MoSe2–metal contacts. J. Phys. Chem. C 2016, 120, 13063–13070.

    Article  Google Scholar 

  27. Li, Y. C.; Chen, X. B. Dirac fermions in blue-phosphorus. 2D Mater. 2014, 1, 031002.

    Article  Google Scholar 

  28. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  29. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  30. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  31. Kresse, J.; Furthmüller G. Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

    Article  Google Scholar 

  32. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  33. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phy. Rev. B 1994, 49, 14251–14269.

    Article  Google Scholar 

  34. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  35. Zhong, H. X.; Quhe, R.; Wang, Y. Y.; Ni, Z. Y.; Ye, M.; Song, Z. G.; Pan, Y. Y.; Yang, J. B.; Yang, L.; Lei, M. et al. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations. Sci. Rep. 2016, 6, 21786.

    Article  Google Scholar 

  36. Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

    Article  Google Scholar 

  37. Smith, D. R.; Schultz, S.; Markoš, P.; Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104.

    Article  Google Scholar 

  38. Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, A. D. The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 2002, 14, 2745–2779.

    Google Scholar 

  39. Atomistix ToolKit, version 2016; QuantumWise A/S: Copenhagen, Denmark, 2017. http://www.quantumwise.com (accessed Jun 9, 2017).

  40. Çakır, D.; Peeters, F. M. Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures. Phys. Rev. B 2014, 89, 245403.

    Article  Google Scholar 

  41. Cheng, A. H. D.; Cheng, D. T. Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 2005, 29, 268–302.

    Article  Google Scholar 

  42. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. Highmobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Google Scholar 

  43. Pan, Y. Y.; Dan, Y.; Wang, Y. Y.; Ye, M.; Zhang, H.; Quhe, R.; Zhang, X. Y.; Li, J. Z.; Guo, W. L.; Yang, L. et al. Schottky barriers in bilayer phosphorene transistors. ACS Appl. Mater. Interfaces 2017, 9, 12694–12705.

    Article  Google Scholar 

  44. Zhang, X. Y.; Pan, Y. Y.; Ye, M.; Quhe, R.; Wang, Y. Y.; Guo, Y.; Dan, Y.; Song, Z. G.; Li, J. Z.; Yang, J. B. et al. Three-layer phosphorene–metal interfaces. Nano Res., in press, DOI: 10.1007/s12274-017-1680-6.

  45. Pan, Y. Y.; Wang, Y. Y.; Wang, L.; Zhong, H. X.; Quhe, R.; Ni, Z. Y.; Ye, M.; Mei, W. N.; Shi, J. J.; Guo, W. L. et al. Graphdiyne-metal contacts and graphdiyne transistors. Nanoscale 2015, 7, 2116–2127.

    Article  Google Scholar 

  46. Wang, Y. Y.; Yang, R. X.; Quhe, R.; Zhong, H. X.; Cong, L. X.; Ye, M.; Ni, Z. Y.; Song, Z. G.; Yang, J. B.; Shi, J. J. et al. Does p-type Ohmic contact exist in WSe2-metal interfaces? Nanoscale 2016, 8, 1179–1191.

    Article  Google Scholar 

  47. Guo, Y.; Pan, F.; Ye, M.; Wang, Y. Y.; Pan, Y. Y.; Zhang, X. Y.; Li, J. Z.; Zhang, H.; Lu, J. Interfacial properties of stanene–metal contacts. 2D Mater. 2016, 3, 035020.

    Article  Google Scholar 

  48. Guo, Y.; Pan, F.; Ye, M.; Sun, X. T.; Wang, Y. Y.; Li, J. Z.; Zhang, X. Y.; Zhang, H.; Pan, Y. Y.; Song, Z. G. et al. Monolayer bismuthene-metal contacts: A theoretical study. ACS Appl. Mater. Inter. 2017, 9, 23128–23140.

    Article  Google Scholar 

  49. Wang, Y. Y.; Ye, M.; Weng, M. Y.; Li, J. Z.; Zhang, X. Y.; Zhang, H.; Guo, Y.; Pan, Y. Y.; Xiao, L.; Liu, J. K. et al. Electrical contacts in monolayer arsenene devices. ACS Appl. Mater. Interfaces, in press, doi: 10.1021/acsami.7b08513.

  50. So, C.; Zhang, H.; Wang, Y. Y.; Ye, M.; Pan, Y. Y.; Quhe, R.; Li, J. Z.; Zhang, X. Y.; Zhou, Y. S.; Lu, J. A computational study of monolayer hexagonal WTe2 to metal interfaces.. Phys. Status Solidi B, in press, DOI: 10.1002/pssb.201600837.

  51. Zeng, J.; Cui, P.; Zhang, Z. Y. Half layer by half layer growth of a blue phosphorene monolayer on a GaN(001) substrate. Phys. Rev. Lett. 2017, 118, 046101.

    Article  Google Scholar 

  52. Heine, V. Theory of surface states. Phys. Rev. 1965, 138, A1689–A1696.

    Article  Google Scholar 

  53. Gong, C.; Colombo, L.; Wallace, R. M.; Cho, K. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett. 2014, 14, 1714–1720.

    Article  Google Scholar 

  54. Guo, Y. Z.; Liu, D. M.; Robertson, J. 3D behavior of schottky barriers of 2D transition-metal dichalcogenides. ACS Appl. Mater. Interfaces 2015, 7, 25709–25715.

    Article  Google Scholar 

  55. Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.

    Article  Google Scholar 

  56. Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

    Article  Google Scholar 

  57. Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.

    Article  Google Scholar 

  58. Ling, Z. P.; Sakar, S.; Mathew, S.; Zhu, J. T.; Gopinadhan, K.; Venkatesan, T.; Ang, K. W. Black phosphorus transistors with near band edge contact schottky barrier. Sci. Rep. 2015, 5, 18000.

    Article  Google Scholar 

  59. Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035–10042.

    Article  Google Scholar 

  60. Lebedeva, I. V.; Lebedev, A. V.; Popov, A. M.; Knizhnik, A. A. Comparison of performance of van der Waals-corrected exchange-correlation functionals for interlayer interaction in graphene and hexagonal boron nitride. Comp. Mater. Sci. 2017, 128, 45–58.

    Article  Google Scholar 

  61. Das, S.; Demarteau, M.; Roelofs, A. Ambipolar phosphorene field effect transistor. ACS Nano 2014, 8, 11730–11738.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11274016, 11474012, 11674005, 11274233, and 11664026), the National Basic Research Program of China (Nos. 2013CB932604 and 2012CB619304), Ministry of Science and Technology (National Materials Genome Project) of China (Nos. 2016YFA0301300 and 2016YFB0700600), and Foundation of Henan Educational Committee (No. 17A430026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Pan or Jing Lu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sun, X., Xu, C. et al. Electrical contacts in monolayer blue phosphorene devices. Nano Res. 11, 1834–1849 (2018). https://doi.org/10.1007/s12274-017-1801-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1801-2

Keywords

Navigation