Skip to main content
Log in

Mechanically robust antireflective coatings

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mechanical strength is an essential parameter that influences and limits the lifetime performance of antireflective (AR) coatings in optical devices. Specifically, amphiphobic AR coatings with reduced reflectance are of great significance as they considerably enlarge the range of fundamental applications. Herein, we describe the design and fabrication of amphiphobic AR coatings with reduced reflectance and enhanced mechanical resilience. Introducing a thin polytetrafluoroethylene (PTFE) layer on top of the bilayer SiO2 coating via vapor deposition method makes it highly liquid repellent. We achieved reduced reflectance (< 1%) over the entire visible wavelength range, as well as tunability according to the desired wavelength region. The fabricated film showed better thermal stability (up to 300 °C) with stable AR efficiency, when an ultrathin dense coat of Al2O3 was deposited via atomic layer deposition (ALD) on the polymer-based bilayer SiO2 antireflective coating (P-BSAR). The experimental results prove that the omnidirectional AR coating in this study exhibits multifunctional properties and should be suitable for the production of protective optical equipment and biocompatible polymer films for the displays of portable electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou, X. Y.; Zhang, Z. Z.; Xu, X. H.; Guo, F.; Zhu, X. T.; Men, X. H.; Ge, B. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl. Mater. Interfaces 2013, 5, 7208–7214.

    Article  Google Scholar 

  2. Ganesh, V. A.; Raut, H. K.; Nair, A. S.; Seeram, R. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322.

    Article  Google Scholar 

  3. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.

    Article  Google Scholar 

  4. Bhushan, B.; Nosonovsk, M. The rose petal effect and the modes of superhydrophobicity. Phil. Trans. R. Soc. A: Math. Eng. Sci. 2010, 368, 4713–4728.

    Article  Google Scholar 

  5. Sun, Y. W.; Wang, L. L.; Gao, Y. Z.; Guo, D. M. Preparation of stable superamphiphobic surfaces on Ti-6Al-4V substrates by one-step anodization. Appl. Surf. Sci. 2015, 324, 825–830.

    Article  Google Scholar 

  6. Du, X.; Li, X. Y.; He, J. H. Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity. ACS Appl. Mater. Interfaces 2010, 2, 2365–2372.

    Article  Google Scholar 

  7. Xu, L. G.; He, J. H. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir 2012, 28, 7512–7518.

    Article  Google Scholar 

  8. Schaeffer, D. A.; Polizos, G.; Smith, B. D.; Lee, D. F.; Hunter, S. R.; Datskos, P. G. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles. Nanotechnology 2015, 26, 055602.

    Article  Google Scholar 

  9. Steele, A.; Bayer, I.; Loth, E. Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett. 2009, 9, 501–505.

    Article  Google Scholar 

  10. Tuteja, A.; Choi, W.; McKinley, G. H.; Cohen, R. E.; Rubner, M. F. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 2008, 33, 752–758.

    Article  Google Scholar 

  11. Tuteja, A.; Choi, W.; Ma, M. L.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622.

    Article  Google Scholar 

  12. Im, M.; Im, H.; Lee, J. H.; Yoon J. B.; Choi, Y. K. A robust superhydrophobic and superoleophobic surface with inversetrapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6, 1401–1404.

    Article  Google Scholar 

  13. Lee, S. G.; Ham, D. S.; Lee, D. Y.; Bong, H.; Cho, K. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica−fluoropolymer hybrid nanoparticles. Langmuir 2013, 29, 15051–15057.

    Article  Google Scholar 

  14. Ganesh, V. A.; Dinachali, S. S.; Raut, H. K.; Walsh, T. M.; Nair, A. S.; Ramakrishna, S. Electrospun SiO2 nanofibers as a template to fabricate a robust and transparent superamphiphobic coating. RSC Adv. 2013, 3, 3819–3824.

    Article  Google Scholar 

  15. Ge, D. T.; Yang, L. L.; Zhang, Y. F.; Rahmawan, Y.; Yang, S. Transparent and superamphiphobic surfaces from onestep spray coating of stringed silica nanoparticle/sol solutions. Part. Part. Syst. Charact. 2014, 31, 763–770.

    Article  Google Scholar 

  16. Steele, A.; Bayer, I.; Loth, E. Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett. 2009, 9, 501–505.

    Article  Google Scholar 

  17. Nishizawa, S.; Shiratori, S. Fabrication of semi-transparent superoleophobic thin film by nanoparticle-based nano–microstructures on see-through fabrics. J. Mater. Sci. 2013, 48, 6613–6618.

    Article  Google Scholar 

  18. Sheen, Y. C.; Huang, Y. C.; Liao, C. S.; Chou, H. Y.; Chang, F. C. New approach to fabricate an extremely superamphiphobic surface based on fluorinated silica nanoparticles. J. Polym. Sci. Part B: Polym. Phys. 2008, 46, 1984–1990.

    Article  Google Scholar 

  19. Vourdas, N. E.; Vlachopoulou, M. E.; Tserepi, A.; Gogolides, E. Nano-textured polymer surfaces with controlled wetting and optical properties using plasma processing. Int. J. Nanotechnol. 2009, 6, 196–207.

    Article  Google Scholar 

  20. Xu, L. B.; Karunakaran, R. G.; Guo, J.; Yang, S. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 1118–1125.

    Article  Google Scholar 

  21. Manabe, K.; Nishizawa, S.; Kyung, K. H.; Shiratori, S. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films. ACS Appl. Mater. Interfaces 2014, 6, 13985–13993.

    Article  Google Scholar 

  22. Zhou, H.; Wang, H. X.; Niu, H. T.; Gestos, A.; T. Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Funct. Mater. 2013, 23, 1664–1670.

    Article  Google Scholar 

  23. Faustini, M.; Nicole, L.; Boissière, C.; Innocenzi, P.; Sanchez, C.; Grosso, D. Hydrophobic, antireflective, selfcleaning, and antifogging sol−gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 2010, 22, 4406–4413.

    Article  Google Scholar 

  24. Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired selfrepairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.

    Article  Google Scholar 

  25. Urata, C.; Masheder, B.; Cheng, D. F.; Hozumi, A. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film. Chem. Commun. 2013, 49, 3318–3320.

    Article  Google Scholar 

  26. Kitamura, R.; Pilon, L.; Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 2007, 46, 8118–8133.

    Article  Google Scholar 

  27. Adair, R.; Chase, L. L.; Payne, S. A. Nonlinear refractiveindex measurements of glasses using three-wave frequency mixing. J. Opt. Soc. Am. B, 1987, 4, 875–881.

    Article  Google Scholar 

  28. Mazumder, P.; Jiang, Y. D.; Baker, D.; Carrilero, A.; Tulli, D.; Infante, D.; Hunt, A. T.; Pruneri, V. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures. Nano Lett. 2014, 14, 4677–4681.

    Article  Google Scholar 

  29. Moghal, J.; Kobler, J.; Sauer, J.; Best, J.; Gardener, M.; Watt, A. A. R.; Wakefield, G. High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 854–859.

    Article  Google Scholar 

  30. Kars, İ.; Çetin, S. Ş.; Kınacı, B.; Sarıkavak, B.; Bengi, A.; Altuntaş, H.; Öztürk, M. K.; Özçelik, S. Influence of thermal annealing on the structure and optical properties of d.c. magnetron sputtered titanium dioxide thin films. Surf. Interface Anal. 2010, 42, 1247–1251.

    Article  Google Scholar 

  31. Kulczyk-Malecka, J.; Kelly, P. J.; West, G.; Clarke, G. C. B.; Ridealgh, J. A. Characterisation studies of the structure and properties of as-deposited and annealed pulsed magnetron sputtered titania coatings. Coatings 2013, 3, 166–176.

    Article  Google Scholar 

  32. Wilson, C. A.; Grubbs, R. K.; George, S. M. Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 2005, 17, 5625–5634.

    Article  Google Scholar 

  33. Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309.

    Article  Google Scholar 

  34. Whitney, V. A.; Elam, J. W.; Zou, S. L.; Zinovev, V. A.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Localized surface plasmon resonance nanosensor: A high-resolution distancedependence study using atomic layer deposition. J. Phys. Chem. B 2005, 109, 20522–20528.

    Article  Google Scholar 

  35. Bakshi, S. R.; Lahiri, D.; Patel, R. R. Agarwal, A. Nanoscratch behavior of carbon nanotube reinforced aluminum coatings. Thin Solid Films 2010, 518, 1703–1711.

    Article  Google Scholar 

  36. Deng, H.; Scharf, T. W.; Barnard, J. A. Adhesion assessment of silicon carbide, carbon, and carbon nitride ultrathin overcoats by nanoscratch techniques. J. Appl. Phys. 1997, 81, 5396–5398.

    Article  Google Scholar 

  37. Beake, B. D.; Vishnyakov, V. M.; Harris, A. J. Relationship between mechanical properties of thin nitride-based films and their behaviour in nano-scratch tests. Tribol. Int. 2011, 44, 468–475.

    Article  Google Scholar 

  38. Rau, K.; Singh. R.; Goldberg, E. Nanoindentation and nanoscratch measurements on silicone thin films synthesized by pulsed laser ablation deposition (PLAD). Mat. Res. Innovat. 2002, 5, 151–161.

    Article  Google Scholar 

  39. Manabe, K.; Matsuda, M.; Nakamura, C.; Takahashi, K.; Kyung, K. H.; Shiratori, S. Antifibrinogen, antireflective, antifogging surfaces with biocompatible nano-ordered hierarchical texture fabricated by layer-by-layer self-assembly. Chem. Mater. 2017, 29, 4745–4753.

    Article  Google Scholar 

  40. Tiwari, M. K.; Bayer, I. S.; Jursich, G. M.; Schutzius, T. M.; Megaridis, C. M. Highly liquid-repellent, large-area, nanostructured poly(vinylidenefluoride)/poly(ethyl 2-cyanoacrylate) composite coatings: Particle filler effects. ACS Appl. Mater. Interfaces 2010, 2, 1114–1119.

    Article  Google Scholar 

  41. Hou, X. H.; Deem, P. T.; Choy, K. L. Hydrophobicity study of polytetrafluoroethylene nanocomposite films. Thin solid Films 2012, 520, 4916–4920.

    Article  Google Scholar 

  42. Koch K.; Ensikat, H. J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759–772.

    Article  Google Scholar 

  43. Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 2006, 17, 1359–1362.

    Article  Google Scholar 

  44. Mortazavi, V.; D’Souza, R. M., Nosonovsky, M. Study of contact angle hysteresis using the Cellular Potts Model. Phys. Chem. Chem. Phys. 2013, 15, 2749–2756.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support by the National Basic Research Program of China (973 program, No. 2013CB934301), the National Natural Science Foundation of China (Nos. 51531006 and 51572148), the Research Project of Chinese Ministry of Education (No. 113007A), and the Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.B., Wu, H., Huai, X. et al. Mechanically robust antireflective coatings. Nano Res. 11, 1699–1713 (2018). https://doi.org/10.1007/s12274-017-1787-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1787-9

Keywords

Navigation