Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlling energy flow in multimetallic nanostructures for plasmonic catalysis

Abstract

It has been shown that photoexcitation of plasmonic metal nanoparticles (Ag, Au and Cu) can induce direct photochemical reactions. However, the widespread application of this technology in catalysis has been limited by the relatively poor chemical reactivity of noble metal surfaces. Despite efforts to combine plasmonic and catalytic metals, the physical mechanisms that govern energy transfer from plasmonic metals to catalytic metals remain unclear. Here we show that hybrid core–shell nanostructures in which a core plasmonic metal harvests visible-light photons can selectively channel that energy into catalytically active centres on the nanostructure shell. To accomplish this, we developed a synthetic protocol to deposit a few monolayers of Pt onto Ag nanocubes. This model system allows us to conclusively separate the optical and catalytic functions of the hybrid nanomaterial and determine that the flow of energy is strongly biased towards the excitation of energetic charge carriers in the Pt shell. We demonstrate the utility of these nanostructures for photocatalytic chemical reactions in the preferential oxidation of CO in excess H2. Our data demonstrate that the reaction occurs exclusively on the Pt surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of Ag–Pt nanocubes.
Figure 2: Measured and calculated optical extinction, absorption, and scattering of Ag and Ag–Pt nanocubes.
Figure 3: Photocatalytic reactor studies.

Similar content being viewed by others

References

  1. Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    Article  CAS  Google Scholar 

  2. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  Google Scholar 

  3. Xiao, Q. et al. Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to anilines. ACS Catal. 6, 1744–1753 (2016).

    Article  CAS  Google Scholar 

  4. Kale, M. J., Avanesian, T. & Christopher, P. Direct photocatalysis by plasmonic nanostructures. ACS Catal. 4, 116–128 (2014).

    Article  CAS  Google Scholar 

  5. Kim, Y., Dumett Torres, D. & Jain, P. K. Activation energies of plasmonic catalysts. Nano Lett. 16, 3399–3407 (2016).

    Article  CAS  Google Scholar 

  6. Christopher, P., Xin, H., Marimuthu, A. & Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 11, 1044–1050 (2012).

    Article  CAS  Google Scholar 

  7. Huang, Y.-F. et al. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. Angew. Chem. Int. Ed. 53, 2353–2357 (2014).

    Article  CAS  Google Scholar 

  8. Marimuthu, A., Zhang, J. & Linic, S. Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state. Science 339, 1590–1593 (2013).

    Article  CAS  Google Scholar 

  9. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2002).

    Article  Google Scholar 

  10. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  CAS  Google Scholar 

  11. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    Article  CAS  Google Scholar 

  12. Linic, S., Aslam, U., Boerigter, C. & Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 14, 567–576 (2015).

    Article  CAS  Google Scholar 

  13. Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    Article  CAS  Google Scholar 

  14. Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. III & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    Article  CAS  Google Scholar 

  15. Hammer, B. & Nørskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  16. Hammer, B. & Nørskov, J. K. in Advances in Catalysis Vol. 45 (eds Bruce, C. & Gates, H. K.) 71–129 (Academic, 2000).

    Google Scholar 

  17. Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article  CAS  Google Scholar 

  18. Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    Article  CAS  Google Scholar 

  19. Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    Article  CAS  Google Scholar 

  20. Bernardi, M., Mustafa, J., Neaton, J. B. & Louie, S. G. Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals. Nat. Commun. 6, 7044 (2015).

    Article  CAS  Google Scholar 

  21. Griffin, S. et al. Imaging energy transfer in Pt-decorated Au nanoprisms via electron energy-loss spectroscopy. J. Phys. Chem. Lett. 7, 3825–3832 (2016).

    Article  CAS  Google Scholar 

  22. Amendola, V., Saija, R., Maragò, O. M. & Antonia Iatì, M. Superior plasmon absorption in iron-doped gold nanoparticles. Nanoscale 7, 8782–8792 (2015).

    Article  CAS  Google Scholar 

  23. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008).

    Article  CAS  Google Scholar 

  24. Kale, M. J., Avanesian, T., Xin, H., Yan, J. & Christopher, P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 14, 5405–5412 (2014).

    Article  CAS  Google Scholar 

  25. Zheng, Z., Tachikawa, T. & Majima, T. Single-particle study of Pt-modified Au nanorods for plasmon-enhanced hydrogen generation in visible to near-infrared region. J. Am. Chem. Soc. 136, 6870–6873 (2014).

    Article  CAS  Google Scholar 

  26. Zheng, Z., Tachikawa, T. & Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137, 948–957 (2014).

    Article  Google Scholar 

  27. Swearer, D. F. et al. Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    Article  CAS  Google Scholar 

  28. Zhang, C. et al. Al–Pd nanodisk heterodimers as antenna–reactor photocatalysts. Nano Lett. 16, 6677–6682 (2016).

    Article  CAS  Google Scholar 

  29. Xiao, Q. et al. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal. 4, 1725–1734 (2014).

    Article  CAS  Google Scholar 

  30. Li, Z. et al. Reversible modulation of surface plasmons in gold nanoparticles enabled by surface redox chemistry. Angew. Chem. 54, 8948–8951 (2015).

    Article  CAS  Google Scholar 

  31. Aslam, U. & Linic, S. Kinetic trapping of immiscible metal atoms into bimetallic nanoparticles through plasmonic visible light-mediated reduction of a bimetallic oxide precursor: case study of Ag–Pt nanoparticle synthesis. Chem. Mater. 28, 8289–8295 (2016).

    Article  CAS  Google Scholar 

  32. Evanoff, D. D. & Chumanov, G. Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J. Phys. Chem. B 108, 13957–13962 (2004).

    Article  CAS  Google Scholar 

  33. Langhammer, C., Kasemo, B. & Zorić, I. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. J. Chem. Phys. 126, 194702 (2007).

    Article  Google Scholar 

  34. Kahlich, M. J., Gasteiger, H. A. & Behm, R. J. Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3 . J. Catal. 171, 93–105 (1997).

    Article  CAS  Google Scholar 

  35. Manasilp, A. & Gulari, E. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl. Catal. B 37, 17–25 (2002).

    Article  CAS  Google Scholar 

  36. Boccuzzi, F. et al. Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production. Catal. Today 75, 169–175 (2002).

    Article  CAS  Google Scholar 

  37. Khurgin, J. B. How to deal with the loss in plasmonics and metamaterials. Nat. Nanotech. 10, 2–6 (2015).

    Article  CAS  Google Scholar 

  38. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters (Springer Science & Business Media, 2013).

    Google Scholar 

  39. Nilekar, A. U., Alayoglu, S., Eichhorn, B. & Mavrikakis, M. Preferential CO oxidation in hydrogen: reactivity of core−shell nanoparticles. J. Am. Chem. Soc. 132, 7418–7428 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the National Science Foundation (NSF) (CBET-1437601 and CBET- 1702471). The synthesis was developed with the support of the US Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences (FG-02-05ER15686). Secondary support for the development of analytical tools used to analyse the data was provided by NSF (CBET-1436056 and CHE- 1362120). The electron microscopy measurements were supported by the University of Michigan College of Engineering and by NSF (DMR-0723032). S.L. also acknowledges the partial support of the Technical University Munich – Institute for Advance Study.

Author information

Authors and Affiliations

Authors

Contributions

U.A. and S.L. developed the project. U.A. carried out the syntheses, characterization, optical measurements and reactor studies. S.C. performed all the optical simulations. All the authors wrote the manuscript and Supplementary Information.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, U., Chavez, S. & Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nature Nanotech 12, 1000–1005 (2017). https://doi.org/10.1038/nnano.2017.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2017.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing