Skip to main content
Log in

Peroxidase-like active Cu-ZIF-8 with rich copper(I)-nitrogen sites for excellent antibacterial performances toward drug-resistant bacteria

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Bacterial pathogens pose a serious threat to human health, and there is an urgent need to develop highly effective antibacterial materials to eliminate the increasingly serious contamination of drug-resistant bacteria. Here, a Cu-doped ZIF-8 particle with unsaturated copper exhibits high peroxidase-like activity. 99.998% antibacterial efficiency against S. aureus can be achieved for 30 min at a low concentration of 50 µg·mL−1, as well as complete sterilization against E. coli (up to 8 log). 99.999% antibacterial efficiency against Methicillin-resistant Staphylococcus aureus can be achieved, performing orders of magnitude higher than Vancomycin. The mechanism shows that the unsaturated Cu-Nx sites are enzyme-like active centers, which could promote the consumption of bacteria reducing substances by H2O2, and the generated *OH further aggravates bacterial oxidative stress and membrane damage. More importantly, the oxidation activity of adsorbed oxygen species on Cu-ZIF-8 is enhanced by charge transfer and structural changes between the ligand and copper center like natural enzymes. Cu-doped ZIF-8 with peroxidase-like activity shows great potential in antibacterial application and the revealed catalytic mechanism is helpful for understanding the high antibacterial activity of nanoparticles with Cu-Nx sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, K. E.; Patel, N. G.; Levy, M. A.; Storeygard, A.; Balk, D.; Gittleman, J. L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ikuta, K. S.; Swetschinski, L. R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A. P.; Davis Weaver, N.; Wool, E. E.; Han, C.; Gershberg Hayoon, A. et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248.

    Article  Google Scholar 

  3. Zhang, Y.; Wen, W. H.; Pu, J. Y.; Tang, M. C.; Zhang, L. W.; Peng, C.; Xu, Y. Q.; Tang, G. L. Extracellularly oxidative activation and inactivation of matured prodrug for cryptic self-resistance in naphthyridinomycin biosynthesis. Proc. Natl. Acad. Sci. USA 2018, 115, 11232–11237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cao, M. Y.; Chang, Z. S.; Tan, J. S.; Wang, X. N.; Zhang, P. F.; Lin, S.; Liu, J. Q.; Li, A. H. Superoxide radical-mediated self-synthesized Au/MoO3−x hybrids with enhanced peroxidase-like activity and photothermal effect for anti-MRSA therapy. ACS Appl. Mater. Interfaces 2022, 14, 13025–13037.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, H.; Sarwar, M. T.; Tian, L. Y.; Bao, W. X.; Yang, H. M. Nanoclay modulates cation occupancy in manganese ferrite for catalytic antibacterial treatment. Inorg. Chem. 2022, 61, 17692–17702.

    Article  CAS  PubMed  Google Scholar 

  6. Li, L.; Cao, S. J.; Wu, Z. H.; Guo, R. Q.; Xie, L.; Wang, L. Y.; Tang, Y. J.; Li, Q.; Luo, X. L.; Ma, L. et al. Modulating electron transfer in vanadium-based artificial enzymes for enhanced ROS-catalysis and disinfection. Adv. Mater. 2022, 34, 2108646.

    Article  CAS  Google Scholar 

  7. Ali, S. R.; De, M. Thiolated ligand-functionalized MoS2 nanosheets for peroxidase-like activities. ACS Appl. Nano Mater. 2021, 4, 12682–12689.

    Article  CAS  Google Scholar 

  8. Yin, W. Y.; Yu, J.; Lv, F. T.; Yan, L.; Zheng, L. R.; Gu, Z. J.; Zhao, Y. L. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano 2016, 10, 11000–11011.

    Article  CAS  PubMed  Google Scholar 

  9. Han, D. L.; Han, Y. J.; Li, J.; Liu, X. M.; Yeung, K. W. K.; Zheng, Y. F.; Cui, Z. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y. et al. Enhanced photocatalytic activity and photothermal effects of cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl. Catal. B: Environ. 2020, 261, 118248.

    Article  CAS  Google Scholar 

  10. Zhang, R. M.; Song, C. J.; Kou, M. P.; Yin, P. Q.; Jin, X. L.; Wang, L.; Deng, Y.; Wang, B.; Xia, D. H.; Wong, P. K. et al. Sterilization of Escherichia coli by photothermal synergy of WO3−x/C nanosheet under infrared light irradiation. Environ. Sci. Technol. 2020, 54, 3691–3701.

    Article  CAS  PubMed  Google Scholar 

  11. Li, P.; Li, J. Z.; Feng, X.; Li, J.; Hao, Y. C.; Zhang, J. W.; Wang, H.; Yin, A. X.; Zhou, J. W.; Ma, X. J. et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liang, Z. D.; Wang, H. Q.; Zhang, K. N.; Ma, G.; Zhu, L. S.; Zhou, L.; Yan, B. Oxygen- defective MnO2/ZIF-8 nanorods with enhanced antibacterial activity under solar light. Chem. Eng. J. 2022, 428, 131349.

    Article  CAS  Google Scholar 

  13. Dong, F. L.; Pang, Z.; Yang, S. Y.; Lin, Q. F.; Song, S.; Li, C.; Ma, X. Y.; Nie, S. X. Improving wastewater treatment by triboelectric-photo/electric coupling effect. ACS Nano 2022, 16, 3449–3475.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, W. W.; Pan, X. T.; Yang, H. L.; Wang, H.; Wu, Q. Y.; Zheng, L. R.; Xu, B. L.; Wang, J. H.; Shi, X. H.; Bai, F. et al. Bioactive metal-organic frameworks with specific metal-nitrogen (M-N) active sites for efficient sonodynamic tumor therapy. ACS Nano 2021, 15, 20003–20012.

    Article  CAS  PubMed  Google Scholar 

  15. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  PubMed  Google Scholar 

  16. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  17. Xing, Y. X.; Wang, L.; Wang, L. C.; Huang, J. X.; Wang, S.; Xie, X. Y.; Zhu, J.; Ding, T.; Cai, K. Y.; Zhang, J. X. Flower-like nanozymes with large accessibility of single atom catalysis sites for ROS generation boosted tumor therapy. Adv. Funct. Mater. 2022, 32, 2111171.

    Article  CAS  Google Scholar 

  18. Ai, Y. J.; Hu, Z. N.; Liang, X. P.; Sun, H. B.; Xin, H. B.; Liang, Q. L. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432.

    Article  CAS  Google Scholar 

  19. Yao, M. S.; Otake, K. I.; Zheng, J. J.; Tsujimoto, M.; Gu, Y. F.; Zheng, L.; Wang, P.; Mohana, S.; Bonneau, M.; Koganezawa, T. et al. Integrated soft porosity and electrical properties of conductive-on-insulating metal-organic framework nanocrystals. Angew. Chem., Int. Ed. 2023, 62, e202303903.

    Article  CAS  Google Scholar 

  20. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  PubMed  Google Scholar 

  21. Natalio, F.; André, R.; Hartog, A. F.; Stoll, B.; Jochum, K. P.; Wever, R.; Tremel, W. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat. Nanotechnol. 2012, 7, 530–535.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, H. J.; Geng, W.; Wu, X. Z.; Zhang, Y. Y.; Xie, L.; Ma, T.; Cheng, C. Spiky artificial peroxidases with V-O-Fe pair sites for combating antibiotic-resistant pathogens. Angew. Chem., Int. Ed. 2024, 63, e202310811.

    Article  CAS  Google Scholar 

  23. Shan, J. Y.; Li, X.; Yang, K. L.; Xiu, W.; Wen, Q. R.; Zhang, Y. Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G.; Wang, L. H. Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 2019, 13, 13797–13808.

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y. L.; Chen, F. M.; He, X. H.; Guo, C. Y.; Cheng, C. X.; Wu, Z. P.; He, Y.; Zhang, W. S.; Cui, F.; Wang, Y. S. et al. Myeloperoxidase-mimetic nanozyme generates hypochlorous acid for phagosomal bacteria elimination. Nano Today 2024, 54, 102137.

    Article  CAS  Google Scholar 

  25. Shi, X. D.; Lv, J.; Deng, S. L.; Zhou, F.; Mei, J. G.; Zheng, L.; Zhang, J. Construction of interlayer coupling diatomic nanozyme with peroxidase-like and photothermal activities for efficient synergistic antibacteria. Adv. Sci., in press, DOI: https://doi.org/10.1002/ADVS.202305823.

  26. Zhang, C. Y.; Nan, Z. D. 2D/3D-shaped Fe0.8Ni0.2S2/ZIF-67 as a nanozyme for rapid measurement of H2O2 and ascorbic acid with a low limit of detection. Inorg. Chem. 2022, 61, 13933–13943.

    Article  CAS  PubMed  Google Scholar 

  27. Hu, M. Z.; Yang, W. J.; Tan, H. Y.; Jin, L.; Zhang, L.; Kerns, P.; Dang, Y. L.; Dissanayake, S.; Schaefer, S.; Liu, B. et al. Template-free synthesis of mesoporous and crystalline transition metal oxide nanoplates with abundant surface defects. Matter 2020, 2, 1244–1259.

    Article  Google Scholar 

  28. Xie, Z. X.; Liang, S.; Cai, X. C.; Ding, B. B.; Huang, S. S.; Hou, Z. Y.; Ma, P. A.; Cheng, Z. Y.; Lin, J. O2-Cu/ZIF-8@Ce6/ZIF-8@F127 composite as a tumor microenvironment-responsive nanoplatform with enhanced photo-/chemodynamic antitumor efficacy. ACS Appl. Mater. Interfaces 2019, 11, 31671–31680.

    Article  CAS  PubMed  Google Scholar 

  29. Kumari, G.; Jayaramulu, K.; Maji, T. K.; Narayana, C. Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study. J. Phys. Chem. A 2013, 117, 11006–11012.

    Article  CAS  PubMed  Google Scholar 

  30. Thomas, A.; Prakash, M. The role of binary mixtures of ionic liquids in ZIF-8 for selective gas storage and separation: A perspective from computational approaches. J. Phys. Chem. C 2020, 124, 26203–26213.

    Article  CAS  Google Scholar 

  31. Yang, Q. H.; Yang, C. C.; Lin, C. H.; Jiang, H. L. Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew. Chem., Int. Ed. 2019, 58, 3511–3515.

    Article  CAS  Google Scholar 

  32. Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

    Article  CAS  Google Scholar 

  33. Liang, N.; Ge, X. Y.; Zhao, Y.; Xia, L.; Song, Z. L.; Kong, R. M.; Qu, F. L. Promoting sensitive colorimetric detection of hydroquinone and Hg2+ via ZIF-8 dispersion enhanced oxidase-mimicking activity of MnO2 nanozyme. J. Hazard. Mater. 2023, 454, 131455.

    Article  CAS  PubMed  Google Scholar 

  34. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taheri, M.; Bernardo, I. D.; Lowe, A.; Nisbet, D. R.; Tsuzuki, T. Green full conversion of ZnO nanopowders to well-dispersed zeolitic imidazolate framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption. Cryst. Growth Des. 2020, 20, 2761–2773.

    Article  CAS  Google Scholar 

  36. Chen, C. L.; Alalouni, M. R.; Dong, X. L.; Cao, Z.; Cheng, Q. P.; Zheng, L. R.; Meng, L. K.; Guan, C.; Liu, L. M.; Abou-Hamad, E. et al. Highly active heterogeneous catalyst for ethylene dimerization prepared by selectively doping Ni on the surface of a zeolitic imidazolate framework. J. Am. Chem. Soc. 2021, 143, 7144–7153.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, X. Z.; Wang, H.; Cheng, J. F.; Li, H.; Wu, X. F.; Zhang, D. H.; Shi, X. H.; Zhang, J. K.; Han, N.; Chen, Y. F. Initiative ROS generation of Cu-doped ZIF-8 for excellent antibacterial performance. Chem. Eng. J. 2023, 466, 143201.

    Article  CAS  Google Scholar 

  38. Liu, Q.; Wan, K. W.; Shang, Y. X.; Wang, Z. G.; Zhang, Y. Y.; Dai, L. R.; Wang, C.; Wang, H.; Shi, X. H.; Liu, D. S. et al. Cofactor-free oxidase-mimetic nanomaterials from self-assembled histidine-rich peptides. Nat. Mater. 2021, 20, 395–402.

    Article  CAS  PubMed  Google Scholar 

  39. Chen, Y.; Zou, H.; Yan, B.; Wu, X. J.; Cao, W. W.; Qian, Y. H.; Zheng, L.; Yang, G. W. Atomically dispersed Cu nanozyme with intensive ascorbate peroxidase mimic activity capable of alleviating ROS-mediated oxidation damage. Adv. Sci. 2022, 9, 2103977.

    Article  CAS  Google Scholar 

  40. Wang, Y. F.; Wang, M. K.; Wang, X. X.; Ma, W. Y.; Liu, J. X.; Li, J. Y. Designed synthesis of CD@Cu-ZIF-8 composites as excellent peroxidase mimics for assaying glutathione. Mater. Chem. Front. 2021, 5, 6125–6132.

    Article  CAS  Google Scholar 

  41. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 177, 11302–11336.

    Article  Google Scholar 

  42. Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

    Article  CAS  PubMed  Google Scholar 

  43. Cao, F. F.; Zhang, L.; Wang, H.; You, Y. W.; Wang, Y.; Gao, N.; Ren, J. S.; Qu, X. G. Defect- rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2019, 58, 16236–16242.

    Article  CAS  Google Scholar 

  44. Wan, Y.; Fang, J.; Wang, Y.; Sun, J.; Sun, Y.; Sun, X. L.; Qi, M. L.; Li, W.; Li, C. Y.; Zhou, Y. M. et al. Antibacterial zeolite imidazole frameworks with manganese doping for immunomodulation to accelerate infected wound healing. Adv. Healthcare Mater. 2021, 10, 2101515.

    Article  CAS  Google Scholar 

  45. Nagarjun, N.; Dhakshinamoorthy, A. A Cu-Doped ZIF-8 metal organic framework as a heterogeneous solid catalyst for aerobic oxidation of benzylic hydrocarbons. New J. Chem. 2019, 43, 18702–18712.

    Article  CAS  Google Scholar 

  46. Wang, Y. F.; Liu, X. S. B. J.; Wang, M. K.; Wang, X. X.; Ma, W. Y.; Li, J. Y. Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sens. Actuators B: Chem. 2021, 329, 129115.

    Article  CAS  Google Scholar 

  47. Dai, Y.; Xing, P.; Cui, X. Q.; Li, Z. H.; Zhang, X. M. Coexistence of Cu(II) and Cu(I) in Cu ion-doped zeolitic imidazolate frameworks (ZIF-8) for the dehydrogenative coupling of silanes with alcohols. Dalton Trans. 2019, 48, 16562–16568.

    Article  CAS  PubMed  Google Scholar 

  48. Zhe, Y.; Wang, J. L.; Zhao, Z. Q.; Ren, G. Y.; Du, J. J.; Li, K.; Lin, Y. Q. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens. Bioelectron. 2023, 220, 114893.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, C. H.; Liu, W. D.; Li, Z.; Yan, B. S.; Lin, J. T.; Chen, C. X.; Zhang, L. B.; Lu, Y. Z. Accelerated mimetic oxidase activity of polydopamine-dressed PdCu nanozyme for the detection of ascorbic acid related bioenzymes. ACS Sustain. Chem. Eng. 2022, 10, 1653–1663.

    Article  Google Scholar 

  50. Wang, T. Q.; Wang, Y. F.; Sun, M. Z.; Hanif, A.; Wu, H.; Gu, Q. F.; Ok, Y. S.; Tsang, D. C. W.; Li, J. Y.; Yu, J. H. et al. Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem. Sci. 2020, 11, 6670–6681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, F. D.; He, H.; Zhang, C. B.; Feng, Z. C.; Zheng, L. R.; Xie, Y. N.; Hu, T. D. Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization. Appl. Catal. B: Environ. 2010, 96, 408–420.

    Article  CAS  Google Scholar 

  52. Ju, Q. Y.; Zheng, J. J.; Xu, L.; Jiang, H. Y.; Xue, Z. Q.; Bai, L.; Guo, Y. Y.; Yao, M. S.; Zhu, T. Y. Enhanced carbon capture with motif-rich amino acid loaded defective robust metal-organic frameworks. Nano Res. 2024, 17, 2004–2010.

    Article  CAS  Google Scholar 

  53. Li, Y. H.; Xiao, J. Z.; Guo, Y. Y.; Han, N.; Yuan, F. L.; Chen, Y. F.; Yao, M. S. Dynamic apertures with diffusion-regulatory functionality in soft porous crystals: A key to solving the century puzzle on isotopologues separation. Nano Res. 2023, 16, 3254–3255.

    Article  Google Scholar 

  54. Li, Y.; Ma, W. S.; Sun, J.; Lin, M.; Niu, Y. S.; Yang, X. C.; Xu, Y. H. Electrochemical generation of Fe3C/N-doped graphitic carbon nanozyme for efficient wound healing in vivo. Carbon 2020, 159, 149–160.

    Article  CAS  Google Scholar 

  55. Liu, Y. H.; Xu, B. L.; Lu, M. Z.; Li, S. S.; Guo, J.; Chen, F. Z.; Xiong, X. L.; Yin, Z.; Liu, H. Y.; Zhou, D. S. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact. Mater. 2022, 12, 246–256.

    CAS  PubMed  Google Scholar 

  56. Shakya, S.; He, Y. P.; Ren, X. H.; Guo, T.; Maharjan, A.; Luo, T.; Wang, T. T.; Dhakhwa, R.; Regmi, B.; Li, H. Y. et al. Ultrafine silver nanoparticles embedded in cyclodextrin metal-organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application. Small 2019, 15, 1901065.

    Article  Google Scholar 

  57. Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

    Article  CAS  PubMed  Google Scholar 

  58. Cao, X. W.; Zhu, C. X.; Hong, Q.; Chen, X. H.; Wang, K. Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Insight into iron leaching from an ascorbate-oxidase-like Fe-N-C nanozyme and oxygen reduction selectivity. Angew. Chem., Int. Ed. 2023, 62, e202302463.

    Article  CAS  Google Scholar 

  59. Liu, W. G.; Zhang, L. L.; Liu, X.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond. J. Am. Chem. Soc. 2017, 139, 10790–10798.

    Article  CAS  PubMed  Google Scholar 

  60. De Angelis, J.; Gastel, J.; Klein, D. C.; Cole, P. A. Kinetic analysis of the catalytic mechanism of serotonin N-acetyltransferase (EC 2.3.1.87). J. Biol. Chem. 1998, 273, 3045–3050.

    Article  CAS  PubMed  Google Scholar 

  61. Zhu, C. X.; Zhou, Z. X.; Gao, X. J.; Tao, Y. H.; Cao, X. W.; Xu, Y.; Shen, Y. F.; Liu, S. Q.; Zhang, Y. J. Cascade nanozymatic network mimicking cells with selective and linear perception of H2O2. Chem. Sci. 2023, 14, 6780–6791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hong, Q.; Yang, H.; Fang, Y. F.; Li, W.; Zhu, C. X.; Wang, Z.; Liang, S. C.; Cao, X. W.; Zhou, Z. X.; Shen, Y. F. et al. Adaptable graphitic C6N6-based copper single-atom catalyst for intelligent biosensing. Nat. Commun. 2023, 14, 2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zakharova, G. S.; Uporov, I. V.; Tishkov, V. I. Horseradish peroxidase: Modulation of properties by chemical modification of protein and heme. Biochemistry (Moscow) 2011, 76, 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  64. Li, G. M.; Liu, H.; Hu, T. D.; Pu, F.; Ren, J. S.; Qu, X. G. Dimensionality engineering of single-atom nanozyme for efficient peroxidase-mimicking. J. Am. Chem. Soc. 2023, 145, 16835–16842.

    Article  CAS  PubMed  Google Scholar 

  65. Li, H. L.; Wang, L. B.; Dai, Y. Z.; Pu, Z. T.; Lao, Z. H.; Chen, Y. W.; Wang, M. L.; Zheng, X. S.; Zhu, J. F.; Zhang, W. H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411–417.

    Article  CAS  PubMed  Google Scholar 

  66. Lim, H.; Brueggemeyer, M. T.; Transue, W. J.; Meier, K. K.; Jones, S. M.; Kroll, T.; Sokaras, D.; Kelemen, B.; Hedman, B.; Hodgson, K. O. et al. Kβ X-ray emission spectroscopy of Cu(I)-lytic polysaccharide monooxygenase: Direct observation of the frontier molecular orbital for H2O2 activation. J. Am. Chem. Soc. 2023, 145, 16015–16025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFC3702800), Beijing Natural Science Foundation (No. 2232017) and the research fund of State Key Laboratory of Mesoscience and Engineering (Nos. MESO-23-A07, and MESO-23-T02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingshui Yao, Xianliang Wang or Yunfa Chen.

Electronic Supplementary Material

12274_2024_6699_MOESM1_ESM.pdf

Peroxidase-like active Cu-ZIF-8 with rich copper(I)-nitrogen sites for excellent antibacterial performances toward drug-resistant bacteria

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, H., Zhang, J. et al. Peroxidase-like active Cu-ZIF-8 with rich copper(I)-nitrogen sites for excellent antibacterial performances toward drug-resistant bacteria. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6699-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6699-x

Keywords

Navigation