Skip to main content

Advertisement

Log in

Review: myogenic and muscle toxicity targets of environmental methylmercury exposure

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

A number of environmental toxicants are noted for their activity that leads to declined motor function. However, the role of muscle as a proximal toxicity target organ for environmental agents has received considerably less attention than the toxicity targets in the nervous system. Nonetheless, the effects of conventional neurotoxicants on processes of myogenesis and muscle maintenance are beginning to resolve a concerted role of muscle as a susceptible toxicity target. A large body of evidence from epidemiological, animal, and in vitro studies has established that methylmercury (MeHg) is a potent developmental toxicant, with the nervous system being a preferred target. Despite its well-recognized status as a neurotoxicant, there is accumulating evidence that MeHg also targets muscle and neuromuscular development as well as contributes to the etiology of motor defects with prenatal MeHg exposure. Here, we summarize evidence for targets of MeHg in the morphogenesis and maintenance of skeletal muscle that reveal effects on MeHg distribution, myogenesis, myotube formation, myotendinous junction formation, neuromuscular junction formation, and satellite cell-mediated muscle repair. We briefly recapitulate the molecular and cellular mechanisms of skeletal muscle development and highlight the pragmatic role of alternative model organisms, Drosophila and zebrafish, in delineating the molecular underpinnings of muscle development and MeHg-mediated myotoxicity. Finally, we discuss how toxicity targets in muscle development may inform the developmental origins of health and disease theory to explain the etiology of environmentally induced adult motor deficits and accelerated decline in muscle fitness with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aguanno S, Petrelli C, Di Siena S, De Angelis L, Pellegrini M, Naro F (2019) A three-dimensional culture model of reversibly quiescent myogenic cells. Stem Cells Int 2019:7548160

    Article  PubMed  PubMed Central  Google Scholar 

  • Aguilar S (2014) Effect of Methylmercury exposure on heart and skeletal muscle development in zebrafish embryos (Danio Rerio).

  • Amin-Zaki L, Majeed MA, Elhassani SB, Clarkson TW, Greenwood MR, Doherty RA (1979) Prenatal methylmercury poisoning: clinical observations over five years. Am J Dis Child 133(2):172–177

    Article  CAS  PubMed  Google Scholar 

  • Amin-Zaki L, Elhassani S, Majeed MA, Clarkson TW, Doherty RA, Greenwood M (1977) Intra-uterine methylmercury poisoning in Iraq. In: Problems of birth defects: from hippocrates to thalidomide and after, pp 233–241

  • Ancel S, Stuelsatz P, Feige JN (2021) Muscle stem cell quiescence: controlling stemness by staying asleep. Trends Cell Biol 31(7):556–568

    Article  CAS  PubMed  Google Scholar 

  • Arjona M, Goshayeshi A, Rodriguez-Mateo C et al (2022) Tubastatin A maintains adult skeletal muscle stem cells in a quiescent state ex vivo and improves their engraftment ability in vivo. Stem Cell Reports 17(1):82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284(5415):770–776

    Article  CAS  PubMed  Google Scholar 

  • Aschner M, Clarkson T (1989) Methyl mercury uptake across bovine brain capillary endothelial cells in vitro: the role of amino acids. Pharmacol Toxicol 64(3):293–297

    Article  CAS  PubMed  Google Scholar 

  • Bakkar N, Guttridge DC (2010) NF-κB signaling: a tale of two pathways in skeletal myogenesis. Physiol Rev 90(2):495–511

    Article  CAS  PubMed  Google Scholar 

  • Bakkar N, Wang J, Ladner KJ et al (2008) IKK/NF-κB regulates skeletal myogenesis via a signaling switch to inhibit differentiation and promote mitochondrial biogenesis. J Cell Biol 180(4):787–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4(2):a008342

    Article  PubMed  PubMed Central  Google Scholar 

  • Bi P, Yue F, Sato Y et al (2016) Stage-specific effects of Notch activation during skeletal myogenesis. Elife 5:e17355

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisen-Hersh EB, Farina M, Barbosa F Jr, Rocha JB, Aschner M (2014) Behavioral effects of developmental methylmercury drinking water exposure in rodents. J Trace Elem Med Biol 28(2):117–124

    Article  CAS  PubMed  Google Scholar 

  • Bland C, Rand MD (2006) Methylmercury induces activation of Notch signaling. Neurotoxicology 27(6):982–991

    Article  CAS  PubMed  Google Scholar 

  • Brookes N (1992) In vitro evidence for the role of glutamate in the CNS toxicity of mercury. Toxicology 76(3):245–256

    Article  CAS  PubMed  Google Scholar 

  • Brunetti A, Goldfine ID (1990) Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem 265(11):5960–5963

    Article  CAS  PubMed  Google Scholar 

  • Bruyère O, Beaudart C, Locquet M, Buckinx F, Petermans J, Reginster J-Y (2016) Sarcopenia as a public health problem. Eur Geriatr Med 7(3):272–275

    Article  Google Scholar 

  • Buas MF, Kadesch T (2010) Regulation of skeletal myogenesis by Notch. Exp Cell Res 316(18):3028–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buas MF, Kabak S, Kadesch T (2009) Inhibition of myogenesis by Notch: evidence for multiple pathways. J Cell Physiol 218(1):84–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burbacher TM, Mohamed MK, Mottett NK (1987) Methylmercury effects on reproduction and offspring size at birth. Reprod Toxicol 1(4):267–278

    Article  PubMed  Google Scholar 

  • Burden SJ, Huijbers MG, Remedio L (2018) Fundamental molecules and mechanisms for forming and maintaining neuromuscular synapses. Int J Mol Sci 19(2):490

    Article  PubMed  PubMed Central  Google Scholar 

  • Candura SM, D’Agostino G, Castoldi AF et al (1997) Effects of mercuric chloride and methyl mercury on cholinergic neuromuscular transmission in the guinea-pig ileum. Pharmacol Toxicol 80(5):218–224

    Article  CAS  PubMed  Google Scholar 

  • Castoldi AF, Candura SM, Costa P, Manzo L, Costa LG (1996) Interaction of mercury compounds with muscarinic receptor subtypes in the rat brain. Neurotoxicology 17(3–4):735–741

    CAS  PubMed  Google Scholar 

  • Chang SF, Lin PL (2016) Systematic literature review and meta-analysis of the association of sarcopenia with mortality. Worldviews Evid-Based Nurs 13(2):153–162

    Article  PubMed  Google Scholar 

  • Charvet B, Ruggiero F, Le Guellec D (2012) The development of the myotendinous junction. A review. Muscles Ligaments Tendons J 2(2):53

    PubMed  PubMed Central  Google Scholar 

  • Chen CY, Borsuk ME, Bugge DM et al (2014) Benthic and pelagic pathways of methylmercury bioaccumulation in estuarine food webs of the northeast United States. PLoS ONE 9(2):e89305

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C-H, Huang L-Y, Lee K-Y et al (2019) Effects of PM2.5 on skeletal muscle mass and body fat mass of the elderly in Taipei, Taiwan. Sci Rep 9(1):11176

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen C-M, Chung M-N, Chiu C-Y, Liu S-H, Lan K-C (2020) Inorganic arsenic exposure decreases muscle mass and enhances denervation-induced muscle atrophy in mice. Molecules 25(13):3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisneros-Montemayor AM, Pauly D, Weatherdon LV, Ota Y (2016) A global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE 11(12):e0166681

    Article  PubMed  PubMed Central  Google Scholar 

  • Collu GM, Hidalgo-Sastre A, Brennan K (2014) Wnt-Notch signalling crosstalk in development and disease. Cell Mol Life Sci 71:3553–3567

    Article  CAS  PubMed  Google Scholar 

  • Colombo MN, Francolini M (2019) Glutamate at the vertebrate neuromuscular junction: from modulation to neurotransmission. Cells 8(9):996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colón-Rodríguez A, Colón-Carrión NM, Atchison WD (2020) AMPA receptor contribution to methylmercury-mediated alteration of intracellular Ca2+ concentration in human induced pluripotent stem cell motor neurons. Neurotoxicology 81:116–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3(3):397–409

    Article  CAS  PubMed  Google Scholar 

  • Constance WD, Mukherjee A, Fisher YE et al (2018) Neurexin and Neuroligin-based adhesion complexes drive axonal arborisation growth independent of synaptic activity. Elife 7:e31659

    Article  PubMed  PubMed Central  Google Scholar 

  • Crane JD, MacNeil LG, Tarnopolsky MA (2013) Long-term aerobic exercise is associated with greater muscle strength throughout the life span. J Gerontol Ser A Biomed Sci Med Sci 68(6):631–638

    Article  Google Scholar 

  • Culbreth M, Rand MD (2020) Methylmercury modifies temporally expressed myogenic regulatory factors to inhibit myoblast differentiation. Toxicol in Vitro 63:104717

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira Ribeiro CA, Nathalie M-D, Gonzalez P et al (2008) Effects of dietary methylmercury on zebrafish skeletal muscle fibres. Environ Toxicol Pharmacol 25(3):304–309

    Article  PubMed  Google Scholar 

  • Demontis F, Piccirillo R, Goldberg AL, Perrimon N (2013) Mechanisms of skeletal muscle aging: insights from Drosophila and mammalian models. Dis Model Mech 6(6):1339–1352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deschenes MR, Maresh CM, Kraemer WJ (1994) The neuromuscular junction: structure, function, and its role in the excitation of muscle. J Strength Condit Res 8(2):103–109

    Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldefrawi M, Mansour N, Eldefrawi A (1977) Interactions of acetylcholine receptors with organic mercury compounds Membrane Toxicity. Springer, pp 449–463

    Google Scholar 

  • Engel GL, Rand MD (2014) The Notch target E (spl) mδ is a muscle-specific gene involved in methylmercury toxicity in motor neuron development. Neurotoxicol Teratol 43:11–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel G, Delwig A, Rand M (2012) The effects of methylmercury on Notch signaling during embryonic neural development in Drosophila melanogaster. Toxicol in Vitro 26(3):485–492

    Article  CAS  PubMed  Google Scholar 

  • Farina M, Aschner M (2017) Methylmercury-induced neurotoxicity: focus on pro-oxidative events and related consequences. In: Neurotoxicity of Metals, pp 267–286

  • Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89(15–16):555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Zhuang C-l, Hu P (2022) Regulation of muscle stem cell fate. Cell Regener 11(1):40

    Article  CAS  Google Scholar 

  • Galazka G, Windsor LJ, Birkedal-Hansen H, Engler JA (1996) APMA (4-aminophenylmercuric acetate) activation of stromelysin-1 involves protein interactions in addition to those with cysteine-75 in the propeptide. Biochemistry 35(34):11221–11227

    Article  CAS  PubMed  Google Scholar 

  • Ganassi M, Badodi S, Ortuste Quiroga HP, Zammit PS, Hinits Y, Hughes SM (2018) Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun 9(1):4232

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganassi M, Badodi S, Wanders K, Zammit PS, Hughes SM (2020) Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. Elife 9:e60445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrard JC, Hay JP, Adams RN et al (2021) Current thoughts of notch’s role in myoblast regulation and muscle-associated disease. Int J Environ Res Public Health 18(23):12558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaimo BD, Borggrefe T (2018) Introduction to molecular mechanisms in Notch signal transduction and disease pathogenesis. In: Molecular Mechanisms of Notch Signaling, pp 3–30

  • Gildor B, Schejter ED, Shilo B-Z (2012) Bidirectional Notch activation represses fusion competence in swarming adult Drosophila myoblasts. Development 139(21):4040–4050

    Article  CAS  PubMed  Google Scholar 

  • Gillman MW (2005) Developmental origins of health and disease. N Engl J Med 353(17):1848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin BJ, Loechel F, Mattei M-G, Engvall E, Albrechtsen R, Wewer UM (1998) A novel, secreted form of human ADAM 12 (meltrin α) provokes myogenesis in vivo. J Biol Chem 273(1):157–166

    Article  CAS  PubMed  Google Scholar 

  • Gioftsidi S, Relaix F, Mourikis P (2022) The Notch signaling network in muscle stem cells during development, homeostasis, and disease. Skeletal Muscle 12(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman PD, Hanson MA (2006) The developmental origins of health and disease. In: Early life origins of health and disease, pp 1–7

  • Gonzalez P, Dominique Y, Massabuau J, Boudou A, Bourdineaud J (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ Sci Technol 39(11):3972–3980

    Article  CAS  PubMed  Google Scholar 

  • Goodman JM, Bensmaia SJ (2020) The neural mechanisms of touch and proprioception at the somatosensory periphery.

  • Gouvêa AL, Gracindo Silva M, Cabral B et al (2021) Progressive resistance exercise prevents muscle strength loss due to muscle atrophy induced by methylmercury systemic intoxication. JCSM Clin Rep 6(3):80–92

    Article  Google Scholar 

  • Grabowska I, Szeliga A, Moraczewski J, Czaplicka I, Brzóska E (2011) Comparison of satellite cell-derived myoblasts and C2C12 differentiation in two-and three-dimensional cultures: changes in adhesion protein expression. Cell Biol Int 35(2):125–133

    Article  CAS  PubMed  Google Scholar 

  • Graham ZA, Lavin KM, O’Bryan SM et al (2021) Mechanisms of exercise as a preventative measure to muscle wasting. Am J Physiol Cell Physiol 321(7):C40–C57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grefte S, Kuijpers-Jagtman AM, Torensma R, Von den Hoff JW (2007) Skeletal muscle development and regeneration. Stem Cells Dev 16(5):857–868

    Article  CAS  PubMed  Google Scholar 

  • Guillen J, Natale F, Carvalho N et al (2019) Global seafood consumption footprint. Ambio 48:111–122

    Article  PubMed  Google Scholar 

  • Gunderson JT, Peppriell AE, Krout IN, Vorojeikina D, Rand MD (2021) Neuroligin-1 is a mediator of methylmercury neuromuscular toxicity. Toxicol Sci 184(2):236–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Wang X-F (2009) Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res 19(1):71–88

    Article  CAS  PubMed  Google Scholar 

  • Hall ZW, Sanes JR (1993) Synaptic structure and development: the neuromuscular junction. Cell 72:99–121

    Article  PubMed  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Moussa EA, Abbott LC (2012) The effect of methylmercury exposure on early central nervous system development in the zebrafish (Danio rerio) embryo. J Appl Toxicol 32(9):707–713

    Article  CAS  PubMed  Google Scholar 

  • He J-H, Gao J-M, Huang C-J, Li C-Q (2014) Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol 42:35–42

    Article  PubMed  Google Scholar 

  • He N, Ye H (2020) Exercise and muscle atrophy. In: Physical exercise for human health, pp 255–267

  • Heindel JJ, Balbus J, Birnbaum L et al (2015) Developmental origins of health and disease: integrating environmental influences. Endocrinology 156(10):3416–3421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y-S, Kim Y-M, Lee K-E (2012) Methylmercury exposure and health effects. J Prev Med Public Health 45(6):353

    Article  PubMed  PubMed Central  Google Scholar 

  • Huet C, Li Z-F, Liu H-Z, Black RA, Galliano M-F, Engvall E (2001) Skeletal muscle cell hypertrophy induced by inhibitors of metalloproteases; myostatin as a potential mediator. Am J Physiol Cell Physiol 281(5):C1624–C1634

    Article  CAS  PubMed  Google Scholar 

  • Hughes BW, Kusner LL, Kaminski HJ (2006) Molecular architecture of the neuromuscular junction. Muscle Nerve 33(4):445–461

    Article  CAS  PubMed  Google Scholar 

  • Jami L (1992) Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiol Rev 72(3):623–666

    Article  CAS  PubMed  Google Scholar 

  • Jang Y-N, Baik EJ (2013) JAK-STAT pathway and myogenic differentiation. Jak-Stat 2(2):e23282

    Article  PubMed  PubMed Central  Google Scholar 

  • Jang YC, Liu Y, Hayworth CR et al (2012) Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD. Aging Cell 11(5):770–782

    Article  CAS  PubMed  Google Scholar 

  • Joensuu OI (1971) Fossil fuels as a source of mercury pollution. Science 172(3987):1027–1028

    Article  CAS  PubMed  Google Scholar 

  • Judson RN, Tremblay AM, Knopp P et al (2012) The Hippo pathway member Yap plays a key role in influencing fate decisions in muscle satellite cells. J Cell Sci 125(24):6009–6019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller JM, Keller ET (2018) The use of mature zebrafish (Danio rerio) as a model for human aging and disease. In: Conn's handbook of models for human aging, pp 351–359

  • Kishi S, Slack BE, Uchiyama J, Zhdanova IV (2009) Zebrafish as a genetic model in biological and behavioral gerontology: where development meets aging in vertebrates–a mini-review. Gerontology 55(4):430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klüppel M, Wrana JL (2005) Turning it up a Notch: cross-talk between TGFβ and Notch signaling. BioEssays 27(2):115–118

    Article  PubMed  Google Scholar 

  • Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137(2):216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda K, Tani S, Tamura K, Minoguchi S, Kurooka H, Honjo T (1999) Delta-induced Notch signaling mediated by RBP-J inhibits MyoD expression and myogenesis. J Biol Chem 274(11):7238–7244

    Article  CAS  PubMed  Google Scholar 

  • Kwon EJ, Kim YJ (2017) What is fetal programming?: a lifetime health is under the control of in utero health. Obstet Gynecol Sci 60(6):506–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavoie RA, Bouffard A, Maranger R, Amyot M (2018) Mercury transport and human exposure from global marine fisheries. Sci Rep 8(1):6705

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehnherr I, St. Louis VL, Hintelmann H, Kirk JL (2011) Methylation of inorganic mercury in polar marine waters. Nat Geosci 4(5):298–302

    Article  CAS  Google Scholar 

  • Leung MC, Williams PL, Benedetto A et al (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106(1):5–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieber RL (2002) Skeletal muscle structure, function, and plasticity. Lippincott Williams & Wilkins

    Google Scholar 

  • Liu W, Wang X, Zhang R, Zhou Y (2009) Effects of postnatal exposure to methylmercury on spatial learning and memory and brain NMDA receptor mRNA expression in rats. Toxicol Lett 188(3):230–235

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Zhang Q, Maavara T, Liu S, Wang X, Raymond PA (2021) Rivers as the largest source of mercury to coastal oceans worldwide. Nat Geosci 14(9):672–677

    Article  CAS  Google Scholar 

  • Louvi A, Artavanis-Tsakonas S (2012) Notch and disease: a growing field. Semin Cell Dev Biol 23(4):473–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahaffey KR (2004) Fish and shellfish as dietary sources of methylmercury and the ω-3 fatty acids, eicosahexaenoic acid and docosahexaenoic acid: risks and benefits. Environ Res 95(3):414–428

    Article  CAS  PubMed  Google Scholar 

  • Malm O (1998) Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ Res 77(2):73–78

    Article  CAS  PubMed  Google Scholar 

  • Martin NR, Passey SL, Player DJ et al (2015) Neuromuscular junction formation in tissue-engineered skeletal muscle augments contractile function and improves cytoskeletal organization. Tissue Eng Part A 21(19–20):2595–2604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergler D, Anderson HA, Chan LHM et al (2007) Methylmercury exposure and health effects in humans: a worldwide concern. AMBIO J Human Environ 36(1):3–11

    Article  CAS  Google Scholar 

  • Mizunoe Y, Kobayashi M, Saito H et al (2021) Prolonged caloric restriction ameliorates age-related atrophy in slow and fast muscle fibers of rat soleus muscle. Exp Gerontol 154:111519

    Article  CAS  PubMed  Google Scholar 

  • Moneim AEA (2015) Mercury-induced neurotoxicity and neuroprotective effects of berberine. Neural Regen Res 10(6):881

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgomery SL, Vorojeikina D, Huang W, Mackay TF, Anholt RR, Rand MD (2014) Genome-wide association analysis of tolerance to methylmercury toxicity in Drosophila implicates myogenic and neuromuscular developmental pathways. PLoS ONE 9(10):e110375

    Article  PubMed  PubMed Central  Google Scholar 

  • Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Novo JP, Martins B, Raposo RS et al (2021) Cellular and molecular mechanisms mediating methylmercury neurotoxicity and neuroinflammation. Int J Mol Sci 22(6):3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuyama K, Abe T, Yano S, Sundquist K, Nabika T (2020) Neighborhood environment and muscle mass and function among rural older adults: a 3-year longitudinal study. Int J Health Geogr 19:1–12

    Article  Google Scholar 

  • Osipo C, Golde TE, Osborne BA, Miele LA (2008) Off the beaten pathway: the complex cross talk between Notch and NF-κB. Lab Invest 88(1):11–17

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou SK (2020) Sarcopenia: a contemporary health problem among older adult populations. Nutrients 12(5):1293

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen BK (2011) Muscle as a secretory organ. Compr Physiol 3(3):1337–1362

    Google Scholar 

  • Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465

    Article  CAS  PubMed  Google Scholar 

  • Peppriell AE, Gunderson JT, Vorojeikina D, Rand MD (2020) Methylmercury myotoxicity targets formation of the myotendinous junction. Toxicology 443:152561

    Article  CAS  PubMed  Google Scholar 

  • Peppriell AE, Gunderson JT, Krout IN, Vorojeikina D, Rand MD (2021) Latent effects of early-life methylmercury exposure on motor function in Drosophila. Neurotoxicol Teratol 88:107037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry RL, Rudnick MA (2000) Molecular mechanisms regulating myogenic determination and differentiation. Front Biosci-Land 5(3):750–767

    Article  Google Scholar 

  • Personius KE, Siebert D, Koch DW, Udin SB (2022) Blockage of neuromuscular glutamate receptors impairs reinnervation following nerve crush in adult mice. Front Cell Neurosci 16:1000218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piper MD (1864) Partridge L (2018) Drosophila as a model for ageing. Biochim Biophys Acta (BBA)-Mol Basis Dis 9:2707–2717

    Google Scholar 

  • Pirrone N, Cinnirella S, Feng X et al (2010) Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys 10(13):5951–5964

    Article  CAS  Google Scholar 

  • Plantié E, Migocka-Patrzałek M, Daczewska M, Jagla K (2015) Model organisms in the fight against muscular dystrophy: lessons from Drosophila and Zebrafish. Molecules 20(4):6237–6253

    Article  PubMed  PubMed Central  Google Scholar 

  • Prince LM, Rand MD (2018a) Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation. Toxicology 393:113–122

    Article  CAS  PubMed  Google Scholar 

  • Prince LM, Rand MD (2018b) Notch target gene E (spl) mδ is a mediator of methylmercury-induced myotoxicity in Drosophila. Front Genet 8:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajanna B, Rajanna S, Hall E, Yallapragada PR (1997) In vitro metal inhibition of N-methyl-D-aspartate specific glutamate receptor binding in neonatal and adult rat brain. Drug Chem Toxicol 20(1–2):21–29

    Article  CAS  PubMed  Google Scholar 

  • Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Rand MD, Bland CE, Bond J (2008) Methylmercury activates enhancer-of-split and bearded complex genes independent of the notch receptor. Toxicol Sci 104(1):163–176

    Article  CAS  PubMed  Google Scholar 

  • Rand MD, Vorojeikina D, Peppriell A, Gunderson J, Prince LM (2019) Drosophotoxicology: elucidating kinetic and dynamic pathways of methylmercury toxicity in a Drosophila model. Front Genet 10:666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand MD, Conrad K, Marvin E et al (2020) Developmental exposure to methylmercury and resultant muscle mercury accumulation and adult motor deficits in mice. Neurotoxicology 81:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rand MD, Tennessen JM, Mackay TF, Anholt RR (2023) Perspectives on the Drosophila melanogaster model for advances in toxicological science. Current Protocols 3(8):e870

    Article  PubMed  Google Scholar 

  • Rando TA, Wyss-Coray T (2021) Asynchronous, contagious and digital aging. Nat Aging 1(1):29–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds LP, Borowicz PP, Caton JS, Crouse MS, Dahlen CR, Ward AK (2019) Developmental programming of fetal growth and development. Vet Clin N Am Food Anim Pract 35(2):229–247

    Article  Google Scholar 

  • Robbins N, Yonezawa T (1971) Developing neuromuscular junctions: first signs of chemical transmission during formation in tissue culture. Science 172(3981):395–398

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Cruz PM, Cossins J, Beeson D, Vincent A (2020) The neuromuscular junction in health and disease: molecular mechanisms governing synaptic formation and homeostasis. Front Mol Neurosci 13:610964

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubenstein LZ (2006) Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing 35(suppl_2):ii37–ii41

    Article  PubMed  Google Scholar 

  • Rubenstein LZ, Josephson KR (2006) Falls and their prevention in elderly people: what does the evidence show? Medical Clinics 90(5):807–824

    PubMed  Google Scholar 

  • Ruiz-Gómez M, Coutts N, Price A, Taylor MV, Bate M (2000) Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102(2):189–198

    Article  PubMed  Google Scholar 

  • Samson JC, Goodridge R, Olobatuyi F, Weis JS (2001) Delayed effects of embryonic exposure of zebrafish (Danio rerio) to methylmercury (MeHg). Aquat Toxicol 51(4):369–376

    Article  CAS  PubMed  Google Scholar 

  • Sceniak MP, Spitsbergen JB, Sabo SL, Yuan Y, Atchison WD (2020) Acute neurotoxicant exposure induces hyperexcitability in mouse lumbar spinal motor neurons. J Neurophysiol 123(4):1448–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnorrer F, Kalchhauser I, Dickson BJ (2007) The transmembrane protein Kon-tiki couples to Dgrip to mediate myotube targeting in Drosophila. Dev Cell 12(5):751–766

    Article  CAS  PubMed  Google Scholar 

  • Severinsen MCK, Pedersen BK (2020) Muscle–organ crosstalk: the emerging roles of myokines. Endocr Rev 41(4):594–609

    Article  PubMed  PubMed Central  Google Scholar 

  • Shawber C, Nofziger D, Hsieh JJ-D et al (1996) Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122(12):3765–3773

    Article  CAS  PubMed  Google Scholar 

  • Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294(1):50–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen AN, Newland MC (2021) Methylmercury exposure and its implications for aging. In: Martin CR, Preedy VR, Rajendram R (eds) Assessments, treatments and modeling in aging and neurological disease—The neuroscience of aging. Elsevier, pp 213–224

  • Siddiqui R, McCutcheon S, Blair H et al (1992) Growth allometry of organs, muscles and bones in mice from lines divergently selected on the basis of plasma insulin-like growth factor-I. Growth Dev Aging GDA 56(1):53–60

    CAS  PubMed  Google Scholar 

  • Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97(4):1235–1294

    Article  CAS  PubMed  Google Scholar 

  • Slater CR (2017) The structure of human neuromuscular junctions: some unanswered molecular questions. Int J Mol Sci 18(10):2183

    Article  PubMed  PubMed Central  Google Scholar 

  • Snijders T, Nederveen JP, McKay BR et al (2015) Satellite cells in human skeletal muscle plasticity. Front Physiol 6:283

    Article  PubMed  PubMed Central  Google Scholar 

  • Spyker JM, Sparber SB, Goldberg AM (1972) Subtle consequences of methylmercury exposure: behavioral deviations in offspring of treated mothers. Science 177(4049):621–623

    Article  CAS  PubMed  Google Scholar 

  • Strasser B, Volaklis K, Fuchs D, Burtscher M (2018) Role of dietary protein and muscular fitness on longevity and aging. Aging Dis 9(1):119

    Article  PubMed  PubMed Central  Google Scholar 

  • Straughn AR, Hindi SM, Xiong G, Kumar A (2019) Canonical NF-κ B signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis. J Mol Cell Biol 11(1):53–66

    Article  CAS  PubMed  Google Scholar 

  • Tissenbaum HA (2015) Using C. elegans for aging research. Invertebr Reprod & Dev 59(sup1):59–63

    Article  Google Scholar 

  • Tolwinski NS (2017) Introduction: Drosophila—a model system for developmental biology. vol 5. In: MDPI, p 9

  • Tsatsakis AM, Vassilopoulou L, Kovatsi L et al (2018) The dose response principle from philosophy to modern toxicology: the impact of ancient philosophy and medicine in modern toxicology science. Toxicol Rep 5:1107–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usuki F, Yasutake A, Matsumoto M, Umehara F, Higuchi I (1998) The effect of methylmercury on skeletal muscle in the rat: a histopathological study. Toxicol Lett 94(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Usuki F, Yasutake A, Umehara F, Higuchi I (2004) Beneficial effects of mild lifelong dietary restriction on skeletal muscle: prevention of age-related mitochondrial damage, morphological changes, and vulnerability to a chemical toxin. Acta Neuropathol 108:1–9

    Article  PubMed  Google Scholar 

  • Valdivia M, Vega-Macaya F, Olguin P (2017) Mechanical control of myotendinous junction formation and tendon differentiation during development. Front Cell Dev Biol 5:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Volaklis KA, Halle M, Meisinger C (2015) Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med 26(5):303–310

    Article  PubMed  Google Scholar 

  • von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA (2012) Wnt signaling in myogenesis. Trends Cell Biol 22(11):602–609

    Article  Google Scholar 

  • Wang R, Guo S, Kang B, Yang L (2023) Toxicogenomic signatures associated with methylmercury induced developmental toxicity in the zebrafish embryos. Chemosphere 313:137380

    Article  CAS  PubMed  Google Scholar 

  • Weis JS (2009) Reproductive, developmental, and neurobehavioral effects of methylmercury in fishes. J Environ Sci Health C 27(4):212–225

    Article  CAS  Google Scholar 

  • Weitkunat M, Kaya-Çopur A, Grill SW, Schnorrer F (2014) Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Curr Biol 24(7):705–716

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S (2012) Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol 32(12):2300–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzemann V (2006) Development of the neuromuscular junction. Cell Tissue Res 326:263–271

    Article  PubMed  Google Scholar 

  • Xu J, Wan CS, Ktoris K, Reijnierse EM, Maier AB (2022) Sarcopenia is associated with mortality in adults: a systematic review and meta-analysis. Gerontology 68(4):361–376

    Article  PubMed  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270(5639):725–727

    Article  CAS  PubMed  Google Scholar 

  • Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y-i, Fujisawa-Sehara A (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377(6550):652–656

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Schulze KL, Bellen HJ (2014) Introduction to notch signaling. In: Notch signaling: methods and protocols, pp 1–14

  • Yin Z, Jiang H, Syversen T, Rocha JB, Farina M, Aschner M (2008) The methylmercury-l-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter. J Neurochem 107(4):1083–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip RK, Riley DA (1987) Effects of methylmercury on the motor and sensory innervation of the rat extensor digitorum longus muscle. Environ Res 43(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y (2012) Methylmercury: a potential environmental risk factor contributing to epileptogenesis. Neurotoxicology 33(1):119–126

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.D.R. is supported by NIEHS grants (R01ES025721, R01ES030940, P30 ES001247). L.M.T. is supported by NIGMS IRACDA K12 award (K12GM106997).

Author information

Authors and Affiliations

Authors

Contributions

Literature search, writing—original draft preparation: L.M.T.; conceptualization, writing—review and editing: all authors; supervision: M.D.R.

Corresponding author

Correspondence to Lok Ming Tam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Statement on welfare of animals

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, L.M., Rand, M.D. Review: myogenic and muscle toxicity targets of environmental methylmercury exposure. Arch Toxicol 98, 1645–1658 (2024). https://doi.org/10.1007/s00204-024-03724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-024-03724-3

Keywords

Navigation