Skip to main content
Log in

High-performance wearable bimetallic nanowire-assisted composite foams for efficient electromagnetic interference shielding, infrared stealth, and piezoresistive sensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

With the accelerated development of modern detection and communication technology, the multifunctional wearable materials with excellent electromagnetic interference (EMI) shielding, infrared stealth, and human monitoring for improving military combat capability have received extensive attention. In this work, the lightweight melamine foam (MF)@silver nanowires (AgNWs)-iron nanowires (FeNWs) (AgFe-MF) was fabricated by a vacuum-assisted dip-coating method. Due to the porous structure and synergistic electrical and magnetic losses, this lightweight (0.115 g/cm3) composite foam with an ultra-low filler content (0.62 vol.%) exhibited an ideal EMI shielding efficiency of 38.4 dB. On the other hand, the AgFe-MF realized a powerful multifunctional integration. The surface saturation temperature of the AgFe-MF reached 94.2 °C under a low applied voltage of 1.8 V and remained extremely fast heating and cooling response and terrific working stability, resulting in excellent infrared stealth and camouflage effects. Furthermore, taking virtues of the elastic porous conductive architecture, the AgFe-MF was utilized as a piezoresistive sensor exhibiting board compressive interval of 0–1.62 kPa (50% strain) with a good sensitivity of 0.57 kPa−1. This work will provide new ideas and insights for developing multifunctional wearable devices in the fields of EMI shielding, thermal management, and piezoresistive sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, M. M.; Tian, L.; Zhang, Q. Q.; You, X.; Yang, J. S.; Dong, S. M. Aosorption-based electromagnetic interference shielding composites with sandwich structure by one-step electrodeposition method. Carbon 2023, 202, 414–424.

    Article  CAS  Google Scholar 

  2. Cheng, H. R.; Xing, L. L.; Zuo, Y.; Pan, Y. M.; Huang, M. N.; Alhadhrami, A.; Ibrahim, M. M.; El-Bahy, Z. M.; Liu, C. T.; Shen, C. Y. et al. Constructing nickel chain/MXene networks in melamine foam towards phase change materials for thermal energy management and absorption-dominated electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 2022, 5, 755–765.

    Article  CAS  Google Scholar 

  3. Mariappan, P. M.; Raghavan, D. R.; Aleem, S. H. E. A.; Zobaa, A. F. Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review. J. Adv. Res. 2016, 7, 727–738.

    Article  Google Scholar 

  4. Ma, L.; Hamidinejad, M.; Wei, L. F.; Zhao, B.; Park, C. B. Absorption-dominant EMI shielding polymer composite foams: Microstructure and geometry optimization. Mater. Today Phys. 2023, 30, 100940.

    Article  CAS  Google Scholar 

  5. Jia, L.; Ding, X.; Sun, J.; Zhang, X.; Tian, X. Y. A controllable gradient structure of hydrophobic composite fabric constructed by silver nanowires and polyvinylidene fluoride microspheres for electromagnetic interference shielding with low reflection. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106884.

    Article  CAS  Google Scholar 

  6. Yao, Y. Y.; Jin, S. H.; Wang, D. X.; Wang, J. F.; Li, D. Z.; Lv, X. J.; Shu, Q. H. Flexible magnetoelectric coupling nanocomposite films with multilayer network structure for dual-band EMI shielding. Compos. Sci. Technol. 2022, 222, 109387.

    Article  CAS  Google Scholar 

  7. Yu, Y. H.; Yi, P.; Xu, W. B.; Sun, X.; Deng, G.; Liu, X. F.; Shui, J. L.; Yu, R. H. Environmentally tough and stretchable MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. 2022, 14, 77.

    Article  CAS  Google Scholar 

  8. Yu, X. C.; Liang, X. W.; Zhao, T.; Zhu, P. L.; Sun, R.; Wong, C. P. Thermally welded honeycomb-like silver nanowires aerogel backfilled with polydimethylsiloxane for electromagnetic interference shielding. Mater. Lett. 2021, 285, 129065.

    Article  CAS  Google Scholar 

  9. Zhou, Y. Y.; Sang, G. L.; Yu, M.; Xu, P.; Ding, Y. S. Electrical and magnetic network design for improving electromagnetic interference shielding performance of waterborne polyurethane fabrics. Mater. Lett. 2022, 314, 131862.

    Article  CAS  Google Scholar 

  10. Wan, C. C.; Li, J. Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 2016, 150, 172–179.

    Article  CAS  PubMed  Google Scholar 

  11. Zheng, Q.; Wang, J. Q.; Yu, M. J.; Cao, W. Q.; Zhai, H. Z.; Cao, M. S. Heterodimensional structure porous nanofibers embedded confining magnetic nanocrystals for electromagnetic functional material and device. Carbon 2023, 210, 118049.

    Article  CAS  Google Scholar 

  12. Zhang, X.; Guo, Y. L.; Feng, Y. J.; Hou, M. H.; Wang, J. Facile synthesis of ultra-lightweight Ni/NiO/NixPy foams with hollow sandwich micro-tubes for absorption-dominated electromagnetic interference shielding. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129764.

    Article  CAS  Google Scholar 

  13. Li, S. S.; Mo, W. J.; Liu, Y.; Wang, Q. Constructing 3D tent-like frameworks in melamine hybrid foam for superior microwave absorption and thermal insulation. Chem. Eng. J. 2023, 454, 140133.

    Article  CAS  Google Scholar 

  14. Rong, H. W.; Song, H. H.; Gao, T.; Li, Y. X.; Zhao, R. Z.; Zhang, X. F. Ultralight melamine foam derived metal nanoparticles encapsulated CNTs/porous carbon composite for electromagnetic absorption. Synth. Met. 2023, 294, 117306.

    Article  CAS  Google Scholar 

  15. Zuo, T. C.; Xie, C. L.; Wang, W.; Yu, D. Ti3C2Tx MXene-ferroferric oxide/carbon nanotubes/waterborne polyurethane-based asymmetric composite aerogels for absorption-dominated electromagnetic interference shielding. ACS Appl. Nano Mater. 2023, 6, 4716–4725.

    Article  CAS  Google Scholar 

  16. Jiang, S.; Qian, K.; Yu, K. J.; Zhou, H. F.; Weng, Y. X.; Zhang, Z. W. Study on ultralight and flexible Fe3O4/melamine derived carbon foam composites for high-efficiency microwave absorption. Chem. Phys. Lett. 2021, 779, 138873.

    Article  CAS  Google Scholar 

  17. Cheng, H. R.; Pan, Y. M.; Wang, X.; Liu, C. T.; Shen, C. Y.; Schubert, D. W.; Guo, Z. H.; Liu, X. H. Ni flower/MXene-melamine foam derived 3D magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano- Micro Lett. 2022, 14, 63.

    Article  CAS  Google Scholar 

  18. Xiao, Y. Y.; He, Y. J.; Wang, R. Q.; Lei, Y. Z.; Yang, J. H.; Qi, X. D.; Wang, Y. Mussel-inspired strategy to construct 3D silver nanoparticle network in flexible phase change composites with excellent thermal energy management and electromagnetic interference shielding capabilities. Compos. Part B: Eng. 2022, 239, 109962.

    Article  CAS  Google Scholar 

  19. Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z. S.; Liu, Y. F.; Yu, Z. Z. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels. Small 2018, 14, 1802479.

    Article  Google Scholar 

  20. Wang, Y. C.; Wang, Y. Z.; Shu, J. C.; Cao, W. Q.; Li, C. S.; Cao, M. S. Graphene implanted shape memory polymers with dielectric gene dominated highly efficient microwave drive. Adv. Funct. Mater. 2023, 33, 2303560.

    Article  CAS  Google Scholar 

  21. Zhang, M.; Cao, M. S.; Wang, Q. Q.; Wang, X. X.; Cao, W. Q.; Yang, H. J.; Yuan, J. A multifunctional stealthy material for wireless sensing and active camouflage driven by configurable polarization. J. Mater. Sci. Technol. 2023, 132, 42–49.

    Article  CAS  Google Scholar 

  22. Cheng, Y. J.; Sun, X. X.; Yang, S.; Wang, D.; Liang, L.; Wang, S. S.; Ning, Y. H.; Yin, W. L.; Li, Y. B. Multifunctional elastic rGO hybrid aerogels for microwave absorption, infrared stealth and heat insulation. Chem. Eng. J. 2023, 452, 139376.

    Article  CAS  Google Scholar 

  23. Gong, S.; Sheng, X. X.; Li, X. L.; Sheng, M. J.; Wu, H.; Lu, X.; Qu, J. P. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater. 2022, 32, 2200570.

    Article  CAS  Google Scholar 

  24. Zhang, D. B.; Yin, R.; Zheng, Y. J.; Li, Q. M.; Liu, H.; Liu, C. T.; Shen, C. Y. Multifunctional MXene/CNTs based flexible electronic textile with excellent strain sensing, electromagnetic interference shielding and Joule heating performances. Chem. Eng. J. 2022, 438, 135587.

    Article  CAS  Google Scholar 

  25. Chen, Y. M.; Luo, H.; Guo, H. T.; Liu, K. M.; Mei, C. T.; Li, Y.; Duan, G. G.; He, S. J.; Han, J. Q.; Zheng, J. J. et al. Anisotropic cellulose nanofibril composite sponges for electromagnetic interference shielding with low reflection loss. Carbohydr. Polym. 2022, 276, 118799.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

    Article  CAS  Google Scholar 

  28. Yang, P. A.; Ruan, H. B.; Sun, Y.; Li, R.; Lu, Y.; Xiang, C. Y. Excellent microwave absorption performances of high length-diameter ratio iron nanowires with low filling ratio. Nanotechnology 2020, 31, 395708.

    Article  CAS  PubMed  Google Scholar 

  29. Li, Y. Q.; Chen, Y. M.; Huang, X. B.; Jiang, S. H.; Wang, G. Anisotropy-functionalized cellulose-based phase change materials with reinforced solar-thermal energy conversion and storage capacity. Chem. Eng. J. 2021, 415, 129086.

    Article  CAS  Google Scholar 

  30. Yang, P. A.; Huang, Y. X.; Li, R.; Huang, X.; Ruan, H. B.; Shou, M. J.; Li, W. J.; Zhang, Y. X.; Li, N.; Dong, L. C. Optimization of Fe@Ag core-shell nanowires with improved impedance matching and microwave absorption properties. Chem. Eng. J. 2022, 430, 132878.

    Article  CAS  Google Scholar 

  31. Peng, Q.; Ma, M.; Chu, Q. D.; Lin, H.; Tao, W. T.; Shao, W. Q.; Chen, S.; Shi, Y. Q.; He, H. W.; Wang, X. Absorption-dominated electromagnetic interference shielding composite foam based on porous and bi-conductive network structures. J. Mater. Chem. A 2023, 11, 10857–10866.

    Article  CAS  Google Scholar 

  32. Li, Q. Y.; Guo, W. M.; Kong, X. T.; Xu, J. L.; Xu, C. S.; Chen, Y. E.; Chen, J.; Jia, X. Y.; Ding, Y. MnFe2O4/rGO/diatomite composites with excellent wideband electromagnetic microwave absorption. J. Alloys Compd. 2023, 941, 168851.

    Article  CAS  Google Scholar 

  33. Hang, T. Y.; Zheng, J. J.; Zheng, Y. F.; Jiang, S. H.; Zhou, L. J.; Sun, Z. X.; Li, X. P.; Tong, G. X.; Chen, Y. M. Wheat-like Ni-coated core–shell silver nanowires for effective electromagnetic wave absorption. J. Colloid Interf. Sci. 2023, 649, 394–402.

    Article  CAS  Google Scholar 

  34. Wang, X. X.; Shu, J. C.; Cao, W. Q.; Zhang, M.; Yuan, J.; Cao, M. S. Eco-mimetic nanoarchitecture for green EMI shielding. Chem. Eng. J. 2019, 369, 1068–1077.

    Article  CAS  Google Scholar 

  35. Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 2004, 16, 401–405.

    Article  CAS  Google Scholar 

  36. Liu, Q. H.; Cao, Q.; Bi, H.; Liang, C. Y.; Yuan, K. P.; She, W.; Yang, Y. J.; Che, R. C. CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 2016, 28, 486–490.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, S. Q.; Shu, J. C.; Cao, M. S. Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. Nanoscale 2022, 14, 7322–7331.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, X. X.; Zheng, Q.; Zheng, Y. J.; Cao, M. S. Green EMI shielding: Dielectric/magnetic “genes” and design philosophy. Carbon 2023, 206, 124–141.

    Article  CAS  Google Scholar 

  39. Che, R. C.; Zhi, C. Y.; Liang, C. Y.; Zhou, X. G. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl. Phys. Lett. 2006, 88, 033105.

    Article  Google Scholar 

  40. Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

    Article  Google Scholar 

  41. Huang, Q. Q.; Zhao, Y.; Wu, Y.; Zhou, M.; Tan, S. J.; Tang, S. L.; Ji, G. B. A dual-band transceiver with excellent heat insulation property for microwave absorption and low infrared emissivity compatibility. Chem. Eng. J. 2022, 446, 137279.

    Article  CAS  Google Scholar 

  42. Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Zhang, Y. L.; Liu, C.; Wei, A. J.; Xiang, X. L.; Wei, L. F.; Gu, J. W. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 2020, 14, 8368–8382.

    Article  CAS  PubMed  Google Scholar 

  43. Huang, C. Y.; Yang, G.; Huang, P.; Hu, J. M.; Tang, Z. H.; Li, Y. Q.; Fu, S. Y. Flexible pressure sensor with an excellent linear response in a broad detection range for human motion monitoring. ACS Appl. Mater. Interfaces 2023, 15, 3476–3485.

    Article  CAS  PubMed  Google Scholar 

  44. Qian, K. P.; Zhou, J. Y.; Miao, M.; Wu, H. M.; Thaiboonrod, S.; Fang, J. H.; Feng, X. Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding. Nano-Micro Lett. 2023, 15, 88.

    Article  CAS  Google Scholar 

  45. Zheng, J. J.; Hang, T. Y.; Li, Z. H.; He, W. W.; Jiang, S. H.; Li, X. P.; Chen, Y. M.; Wu, Z. Y. High-performance and multifunctional conductive aerogel films for outstanding electromagnetic interference shielding, Joule heating and energy harvesting. Chem. Eng. J. 2023, 471, 144548.

    Article  CAS  Google Scholar 

  46. Hang, T. Y.; Zhou, L. J.; Li, Z. H.; Zheng, Y. F.; Yao, Y. Q.; Cao, Y. X.; Xu, C. H.; Jiang, S. H.; Chen, Y. M.; Zheng, J. J. Constructing gradient reflection and scattering porous framework in composite aerogels for enhanced microwave absorption. Carbohydr. Polym. 2024, 329, 121777.

    Article  CAS  PubMed  Google Scholar 

  47. Hang, T. Y.; Chen, Y. M.; Yin, F. Q.; Shen, J. H.; Li, X. P.; Li, Z. C.; Zheng, J. J. Highly stretchable polyvinyl alcohol composite conductive hydrogel sensors reinforced by cellulose nanofibrils and liquid metal for information transmission. Int. J. Biol. Macromol. 2024, 258, 128855.

    Article  CAS  PubMed  Google Scholar 

  48. Chen, Y. M.; Zhang, L.; Mei, C. T.; Li, Y.; Duan, G. G.; Agarwal, S.; Greiner, A.; Ma, C. X.; Jiang, S. H. Wood-inspired anisotropic cellulose nanofibril composite sponges for multifunctional applications. ACS Appl. Mater. Interfaces 2020, 12, 35513–35522.

    Article  CAS  PubMed  Google Scholar 

  49. Hang, T. Y.; Xu, C. H.; Shen, J. H.; Zheng, J. J.; Zhou, L. J.; Li, M. J.; Li, X. P.; Jiang, S. H.; Yang, P. G.; Zhou, W. et al. Ultra-flexible silver/iron nanowire decorated melamine composite foams for high-efficiency electromagnetic wave absorption and thermal management. J. Colloid Interf. Sci. 2024, 654, 945–954.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ22E030016), the National Natural Science Foundation of China (Nos. 52275137 and 51705467), the China Postdoctoral Science Foundation (No. 2022M722831), the Postdoctoral Research Selected Funding Project of Zhejiang Province (No. ZJ2022063), and the Self-Topic Fund of Zhejiang Normal University (No. 2020ZS04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiming Chen, Jiajia Zheng or Guoxiu Tong.

Electronic Supplementary Material

12274_2024_6565_MOESM1_ESM.pdf

High-performance wearable bimetallic nanowire-assisted composite foams for efficient electromagnetic interference shielding, infrared stealth, and piezoresistive sensing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, T., Zhou, L., Xu, C. et al. High-performance wearable bimetallic nanowire-assisted composite foams for efficient electromagnetic interference shielding, infrared stealth, and piezoresistive sensing. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6565-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6565-9

Keywords

Navigation