Issue 20, 2024

Understanding charge transport and dielectric relaxation properties in lead-free Cs2ZrCl6 nanoparticles

Abstract

In the exploration of perovskite materials devoid of lead and appropriate for capturing solar energy, a recent finding has surfaced concerning Cs2ZrCl6. This compound has attracted interest as a potential candidate, displaying advantageous optical and electrical features, coupled with remarkable durability under environmental stresses. This research outlines the effective production of non-toxic metal halide nanoparticles of Cs2ZrCl6 using the gradual cooling technique. Thorough examinations have been conducted to explore the structural, optical, and dielectric traits. Over the frequency range of 101–106 Hz, the dielectric constant, loss factor, electric modulus, and electrical conductivity of Cs2ZrCl6 exhibit a strong dependence on temperature. The Nyquist plot confirms the distinct contributions of grains and grain boundaries to the total impedance. In the high-frequency region, the dielectric constant tends to increase with temperature. In accordance with the modified Kohlrausch–Williams–Watts (KWW) equation, an asymmetric nature corresponding to the non-Debye type is observed in the electric modulus spectra at different temperatures. Furthermore, the imaginary part of the electric modulus spectrum shifts from the non-Debye type towards the Debye type with increasing temperature, despite not obtaining an exact Debye response. The frequency-dependent behavior of AC conductivity has been modeled using Joncher's universal law. The conduction mechanism within the Cs2ZrCl6 compound is attributed to the small polaron tunneling model (NSPT). Furthermore, Cs2ZrCl6 has the potential to function as an energy harvesting device due to its elevated dielectric constant combined with minimal dielectric loss.

Graphical abstract: Understanding charge transport and dielectric relaxation properties in lead-free Cs2ZrCl6 nanoparticles

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
17 Mar 2024
Accepted
24 Apr 2024
First published
30 Apr 2024
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2024,14, 14221-14232

Understanding charge transport and dielectric relaxation properties in lead-free Cs2ZrCl6 nanoparticles

M. Ben Bechir, M. Akermi and H. J. Alathlawi, RSC Adv., 2024, 14, 14221 DOI: 10.1039/D4RA02031F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements