Skip to main content
Log in

Chiral-induced synthesis of chiral covalent organic frameworks core-shell microspheres for HPLC enantioseparation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Two chiral covalent organic frameworks (CCOFs) core-shell microspheres based on achiral organic precursors by chiral-induced synthesis strategy for HPLC enantioseparation are reported for the first time. Using n-hexane/isopropanol as mobile phase, various kinds of racemates were selected as analytes and separated on the CCOF-TpPa-1@SiO2 and CCOF-TpBD@SiO2-packed columns with a low column backpressure (3 ~ 9 bar). The fabricated two CCOFs@SiO2 chiral columns exhibited good separation performance towards various racemates with high column efficiency (e.g., 19,500 plates m−1 for (4-fluorophenyl)ethanol and 18,900 plates m−1 for 1-(4-chlorophenyl)ethanol) and good reproducibility. Some effects have been investigated such as the analyte mass and column temperature on the HPLC enantioseparation. Moreover, the chiral separation results of the CCOF-TpPa-1@SiO2 chiral column and the commercialized Chiralpak AD-H column show a good complementarity. This study demonstrates that the usage of chiral-induced synthesis strategy for preparing CCOFs core-shell microspheres as a novel stationary phase has a good application potential in HPLC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Cote AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM (2007) Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J Am Chem Soc 129(43):12914–12915. https://doi.org/10.1021/ja0751781

    Article  CAS  PubMed  Google Scholar 

  2. Hunt JR, Doonan CJ, Levangie JD, Cote AP, Yaghi OM (2008) Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 130(36):11872–11873. https://doi.org/10.1021/ja805064

    Article  CAS  PubMed  Google Scholar 

  3. Waller PJ, Gandara F, Yaghi OM (2015) Chemistry of covalent organic frameworks. Acc Chem Res 48(12):3053–3063. https://doi.org/10.1021/acs.accounts.5b00369

    Article  CAS  PubMed  Google Scholar 

  4. Feng X, Ding XS, Jiang DL (2012) Covalent organic frameworks. Chem Soc Rev 41(18):6010–6014. https://doi.org/10.1039/C2CS35157A

    Article  CAS  PubMed  Google Scholar 

  5. Colson JW, Dichtel WR (2013) Rationally synthesized two-dimensional polymers. Nat Chem 5(6):453–465. https://doi.org/10.1038/nchem.1628

    Article  CAS  PubMed  Google Scholar 

  6. Jiang JC, Zhao YB, Yaghi OM (2016) Covalent chemistry beyond molecules. J Am Chem Soc 138(10):3255–3265. https://doi.org/10.1021/jacs.5b10666

    Article  CAS  PubMed  Google Scholar 

  7. Tang B, Wang W, Hou HP, Liu YQ, Liu ZK, Geng LN, Sun LQ, Luo AQ (2022) A β-cyclodextrin covalent organic framework used as a chiral stationary phase for chiral separation in gas chromatography. Chin Chem Lett 33(2):898–902. https://doi.org/10.1016/j.cclet.2021.06.089

    Article  CAS  Google Scholar 

  8. Wang JL, Zhang ST (2019) Covalent organic frameworks (COFs) for environmental applications. Coord Chem Rev 400:213046. https://doi.org/10.1016/j.ccr.2019.213046

    Article  CAS  Google Scholar 

  9. Wang ZF, Zhang SN, Chen Y, Zhang ZJ, Ma SQ (2020) Covalent organic frameworks for separation applications. Chem Soc Rev 49(3):708–735. https://doi.org/10.1039/c9cs00827f

    Article  CAS  PubMed  Google Scholar 

  10. Pang YH, Huang YY, Shen XF, Wang YY (2021) Electro-enhanced solid-phase microextraction with covalent organic framework modified stainless steel fiber for efficient adsorption of bisphenol A. Anal Chim Acta 1142:99–107. https://doi.org/10.1016/j.aca.2020.10.061

    Article  CAS  PubMed  Google Scholar 

  11. Wang YY, Wang XH, Sun QY, Li RJ, Ji YB (2021) Facile separation of enantiomers via covalent organic framework bonded stationary phase. Microchim Acta 188:367. https://doi.org/10.1007/s00604-021-04925-8

    Article  CAS  Google Scholar 

  12. Xiang ZH, Mercado R, Huck JM, Wang H, Guo ZH, Wang WC, Cao DP, Haranczyk M, Smit B (2015) Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture. J Am Chem Soc 137(41):13301–13307. https://doi.org/10.1021/jacs.5b06266

    Article  CAS  PubMed  Google Scholar 

  13. Chen YL, Xia L, Lu ZC, Li GK, Hu YL (2021) In situ fabrication of chiral covalent triazine frameworks membranes for enantiomer separation. J Chromatogr A 1654:462475. https://doi.org/10.1016/j.chroma.2021.462475

    Article  CAS  PubMed  Google Scholar 

  14. Yusran Y, Li H, Guan XY, Fang QR, Qiu SL (2020) Covalent organic frameworks for catalysis. EnergyChem 2(3):100035. https://doi.org/10.1016/j.enchem.2020.100035

    Article  Google Scholar 

  15. Zhang YW, Shen XC, Feng X, Xia H, Mu Y, Liu XM (2016) Covalent organic frameworks as pH responsive signaling scaffolds. Chem Commun 52(74):11088–11091. https://doi.org/10.1039/C6CC05748A

    Article  CAS  Google Scholar 

  16. Bhunia S, Deo KA, Gaharwar AK (2020) 2D covalent organic frameworks for biomedical applications. Adv Funct Mater 30(27):2002046. https://doi.org/10.1002/adfm.202002046

    Article  CAS  Google Scholar 

  17. Das S, Heasman P, Ben T, Qiu SL (2017) Porous organic materials: strategic design and structure-function correlation. Chem Rev 117(3):1515–1563. https://doi.org/10.1021/acs.chemrev.6b00439

    Article  CAS  PubMed  Google Scholar 

  18. Wu MX, Yang YW (2017) Applications of covalent organic frameworks (COFs): from gas storage and separation to drug delivery. Chin Chem Lett 28(6):1135–1143. https://doi.org/10.1016/j.cclet.2017.03.026

    Article  CAS  Google Scholar 

  19. Tarafder A, Miller L (2021) Chiral chromatography method screening strategies: past, present and future. J Chromatogr A 1638:461878. https://doi.org/10.1016/j.chroma.2021.461878

    Article  CAS  PubMed  Google Scholar 

  20. Zhang GY, Li XL, Liao QB, Liu YF, Xi K, Huang WY, Jia XD (2018) Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat Commun 9(1):2785. https://doi.org/10.1038/s41467-018-04910-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodríguez-San-Miguel D, Montoro C, Zamora F (2020) Covalent organic framework nanosheets: preparation, properties and applications. Chem Soc Rev 49(8):2291–2302. https://doi.org/10.1039/c9cs00890j

    Article  CAS  PubMed  Google Scholar 

  22. Zhang K, Cai SL, Yan YL, He ZH, Lin HM, Huang XL, Zheng SR, Fan J, Zhang WG (2017) Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography. J Chromatogr A 1519:100–109. https://doi.org/10.1016/j.chroma.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  23. Qian HL, Yang CX, Yan XP (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7(1):12104. https://doi.org/10.1038/ncomms12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma MX, Du XY, Zhang L, Gan J, Yang JX (2020) β-Cyclodextrin covalent organic framework-modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules. Microchim Acta 187:385. https://doi.org/10.1007/s00604-020-04360-1

    Article  CAS  Google Scholar 

  25. Kong DY, Bao T, Chen ZL (2017) In situ synthesis of the imine-based covalent organic framework LZU1 on the inner walls of capillaries for electrochromatographic separation of nonsteroidal drugs and amino acids. Microchim Acta 184:1169–1176. https://doi.org/10.1007/s00604-017-2095-5

    Article  CAS  Google Scholar 

  26. Zhao WJ, Hu K, Hu CC, Wang XY, Yu AJ, Zhang SS (2017) Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J Chromatogr A 1487:83–88. https://doi.org/10.1016/j.chroma.2016.12.082

    Article  CAS  PubMed  Google Scholar 

  27. Wang LL, Yang CX, Yan XP (2017) In situ growth of covalent organic framework shells on silica microspheres for application in liquid chromatography. Chem Plus Chem 82(6):933–938. https://doi.org/10.1002/cplu.201700223

    Article  CAS  PubMed  Google Scholar 

  28. Leme G, Madigan B, Eikens J, Harmes DC, Richardson D, Carr P, Stoll D (2019) In situ measurement of pH in liquid chromatography systems using a colorimetric approach. Anal Methods 11(3):1968–1976. https://doi.org/10.1039/C8AY02496K

    Article  Google Scholar 

  29. Xu S, Li ZX, Zhang LY, Zhang WB, Li DX (2021) In situ growth of COF-rLZU1 on the surface of silica sphere as stationary phase for high performance liquid chromatography. Talanta 221:121612. https://doi.org/10.1016/j.talanta.2020.121612

    Article  CAS  PubMed  Google Scholar 

  30. Li WX, Chen N, Zhu Y, Shou D, Zhi MY, Zeng XQ (2019) A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs. Microchim Acta 186:76. https://doi.org/10.1007/s00604-018-3187-6

    Article  CAS  Google Scholar 

  31. Guo P, Yuan BY, Yu YY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral covalent organic framework core-shell composite CTpBD@SiO2 used as stationary phase for HPLC enantioseparation. Microchim Acta 188:292. https://doi.org/10.1007/s00604-021-04954-3

    Article  CAS  Google Scholar 

  32. Xu NY, Guo P, Chen JK, Zhang JH, Wang BJ, Xie SM, Yuan LM (2021) Chiral core-shell microspheres β-CD-COF@SiO2 used for HPLC enantioseparation. Talanta 235:122754. https://doi.org/10.1016/j.talanta.2021.122754

    Article  CAS  PubMed  Google Scholar 

  33. Liu C, Guo P, Lu YR, Zhu YL, Ran XY, Wang BJ, Zhang JH, Xie SM, Yuan LM (2023) In situ growth preparation of a new chiral covalent triazine framework core-shell microspheres used for HPLC enantioseparation. Microchim Acta 190:238. https://doi.org/10.1007/s00604-023-05806-y

    Article  CAS  Google Scholar 

  34. Han X, Huang JJ, Yuan C, Liu Y, Cui Y (2018) Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 140(3):892–895. https://doi.org/10.1021/jacs.7b12110

    Article  CAS  PubMed  Google Scholar 

  35. Yu YY, Yuan BY, Xu NY, Zhang JH, Fu N, Xie SM, Yuan LM (2020) Separation of chiral compounds using chiral covalent frameworks CTpPa-1 as HPLC stationary phase. J Instr Anal 39(2):167–173. https://doi.org/10.3969/j.issn.1004-4957.2020.02.001

    Article  Google Scholar 

  36. Zhang SN, Zheng YL, An HD, Aguila B, Yang CX, Dong YY, Xie W, Cheng P, Zhang ZJ, Chen Y, Ma SQ (2018) Covalent organic frameworks with chirality enriched by biomolecules for efficient chiral separation. Angew Chem Int Edit 57(51):16754–16759. https://doi.org/10.1002/anie.201810571

    Article  CAS  Google Scholar 

  37. Song Q, Yang J, Zheng K, Zhang T, Yuan C, Yuan LM, Hou XD (2024) Chiral memory in dynamic transformation from porous organic cages to covalent organic frameworks for enantiorecognition analysis. J Am Chem Soc 146(13):7594–7604. https://doi.org/10.1021/jacs.3c13692

    Article  CAS  PubMed  Google Scholar 

  38. Han X, Yuan C, Hou B, Liu L, Li H, Liu Y, Cui Y (2020) Chiral covalent organic frameworks: design, synthesis and property. Chem Soc Rev 49(17):6248–6272. https://doi.org/10.1039/D0CS00009D

    Article  CAS  PubMed  Google Scholar 

  39. Han X, Zhang J, Huang JJ, Wu XW, Yuan DQ, Liu Y, Cui Y (2018) Chiral induction in covalent organic frameworks. Nat Commun 9(1):1294. https://doi.org/10.1038/s41467-018-03689-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu YY, Xu NY, Zhang JH, Wang BJ, Xie SM, Yuan LM (2020) Chiral metal-organic framework D-His-ZIF-8@SiO2 core-shell microspheres used for HPLC enantioseparations. ACS Appl Mater Interfaces 12(14):16903–16911. https://doi.org/10.1021/acsami.0c01023

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 22364022, 21964021, and 22064020) and the Applied Basic Research Foundation of Yunnan Province (No. 202201AT070029 and 202101AT070101).

Author information

Authors and Affiliations

Authors

Contributions

All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Jun-Hui Zhang or Sheng-Ming Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6.08 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Guo, P., Ran, XY. et al. Chiral-induced synthesis of chiral covalent organic frameworks core-shell microspheres for HPLC enantioseparation. Microchim Acta 191, 281 (2024). https://doi.org/10.1007/s00604-024-06347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06347-8

Keywords

Navigation