Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Manipulating chiral spin transport with ferroelectric polarization

Abstract

A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO3 and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO3 carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin–torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO3, an all-oxide, energy-scalable logic is demonstrated composed of spin–orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of chiral magnon transport in multiferroics.
Fig. 2: Spin transmission controlled by ferroelectric polarization in BiFeO3.
Fig. 3: Magnetization switching induced by the spin-torque in BiFeO3 under the control of ferroelectric polarization.
Fig. 4: Magnetoelectric spin–orbit logic based on controllable magnon transport in BiFeO3.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  2. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  CAS  Google Scholar 

  3. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, D. et al. High-efficiency magnon-mediated magnetization switching in all-oxide heterostructures with perpendicular magnetic anisotropy. Adv. Mater. 34, 2203038 (2022).

    Article  CAS  Google Scholar 

  8. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Han, J. et al. Birefringence-like spin transport via linearly polarized antiferromagnetic magnons. Nat. Nanotechnol. 15, 563–568 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490–495 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485–489 (2023).

    Article  CAS  PubMed  Google Scholar 

  14. Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Hamadeh, A. et al. Full control of the spin-wave damping in a magnetic insulator using spin–orbit torque. Phys. Rev. Lett. 113, 197203 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Y. et al. Piezoelectric strain-controlled magnon spin current transport in an antiferromagnet. Nano Lett. 22, 4646–4653 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Moon, J.-H. et al. Spin-wave propagation in the presence of interfacial Dzyaloshinskii–Moriya interaction. Phys. Rev. B 88, 184404 (2013).

    Article  Google Scholar 

  18. Gitgeatpong, G. et al. Nonreciprocal magnons and symmetry-breaking in the noncentrosymmetric antiferromagnet. Phys. Rev. Lett. 119, 047201 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Rovillain, P. et al. Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nat. Mater. 9, 975–979 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Gross, I. et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature 549, 252–256 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Haykal, A. et al. Antiferromagnetic textures in BiFeO3 controlled by strain and electric field. Nat. Commun. 11, 1704 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

    Article  Google Scholar 

  28. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005).

    Article  Google Scholar 

  29. Huang, Y.-L. et al. Manipulating magnetoelectric energy landscape in multiferroics. Nat. Commun. 11, 2836 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heron, J. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Rahmedov, D., Wang, D., Íñiguez, J. & Bellaiche, L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Ramazanoglu, M. et al. Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3. Phys. Rev. Lett. 107, 207206 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).

    Article  CAS  Google Scholar 

  34. Wang, H. et al. Chiral spin-wave velocities induced by all-garnet interfacial Dzyaloshinskii–Moriya interaction in ultrathin yttrium iron garnet films. Phys. Rev. Lett. 124, 027203 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, X. et al. Novel spin–orbit torque generation at room temperature in an all-oxide epitaxial La0.7Sr0.3MnO3/SrIrO3 system. Adv. Mater. 33, 2008269 (2021).

    Article  CAS  Google Scholar 

  36. Mangeri, J. et al. Coupled magnetostructural continuum model for multiferroic BiFeO3. Phys. Rev. B 108, 094101 (2023).

    Article  CAS  Google Scholar 

  37. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Noël, P. et al. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature 580, 483–486 (2020).

    Article  PubMed  Google Scholar 

  39. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin–torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Article  PubMed  Google Scholar 

  41. Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Merbouche, H. et al. Voltage-controlled reconfigurable magnonic crystal at the sub-micrometer scale. ACS Nano 15, 9775–9781 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Yi, D. et al. Tailoring magnetoelectric coupling in BiFeO3/La0.7Sr0.3MnO3 heterostructure through the interface engineering. Adv. Mater. 31, 1806335 (2019).

    Article  Google Scholar 

  44. Yu, P. et al. Interface control of bulk ferroelectric polarization. Proc. Natl Acad. Sci. USA 109, 9710–9715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Parsonnet, E. et al. Non-volatile electric field control of thermal magnons in the absence of an applied magnetic field. Phys. Rev. Lett. 129, 087601 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & Van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  CAS  Google Scholar 

  48. Shikoh, E. et al. Spin-pump-induced spin transport in p-type Si at room temperature. Phys. Rev. Lett. 110, 127201 (2013).

    Article  PubMed  Google Scholar 

  49. Nan, T. et al. Anisotropic spin–orbit torque generation in epitaxial SrIrO3 by symmetry design. Proc. Natl Acad. Sci. USA 116, 16186–16191 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lindsay, A. D. et al. MOOSE: enabling massively parallel multiphysics simulation. SoftwareX 20, 101202 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for fruitful discussions with A. Fert, E. Parsonnet and Y. Huang. X.C., P.S., D.V., S.S., L.W.M., Z.Y. and R.R. acknowledge support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under Contract No. DE-AC02-05-CH11231 (Codesign of Ultra- Low-Voltage Beyond CMOS Microelectronics for the development of materials for low-power microelectronics). X.H. and D.C.R. acknowledge support from the SRC-JUMP ASCENT centre. R.J. acknowledges support from the US Department of Energy, under contract no. DE-SC0017671. Y.L. and R.C. acknowledge support from the Air Force Office of Scientific Research under grant no. FA9550-19-1-0307. T.W. and Z.Q. acknowledge support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05CH11231 (van der Waals heterostructures programme, KCWF16). This research used resources of the Advanced Light Source, which is a DOE Office of Science User Facility under contract no. DE-AC02-05CH11231. H.T. acknowledges support from the Bakar Fellows Program. H.P. acknowledges support from Army Research Office and Army Research Laboratory via the Collaborative for Hierarchical Agile and Responsive Materials (CHARM) under cooperative agreement W911NF-19-2-0119. J.M. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement SCALES – 897614. D.R.R. acknowledges funding from the Ministerio dell’Università e della Ricerca, Decreto Ministeriale n. 1062 del 10/08/2021 (PON Ricerca e Innovazione). O.H. acknowledges support from the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

X.C. and R.R. supervised this study. X.H. carried out the synthesis and characterization of heterostructures. X.H. and X.C. fabricated the devices. X.H. and R.J. carried out the ST-FMR measurements. X.H. and X.C. carried out the current-induced magnetization switching measurements. X.C. performed the non-local transport measurements for BFO heterostructures. C.K. performed dynamic XMCD measurements at Beamline 4.0.2 of the Advanced Light Source. Y.L. and R.C. performed the theoretical calculations. J.M., D.R.R., O.H. and J.Í. developed and performed the coupled polar-micromagnetic simulations. X.C., Z.Y. and D.V. devised the electronic model and performed the calculations. S. Susarla performed the microstructure and electronic structure characterizations. H.Z., T.W., L.C., C.H.-H., I.H., S.H., H.P., J.Y., P.M., P.S., Z.Q., S. Salahuddin, M.R., D.G.S., L.W.M. and D.C.R. gave suggestions on the experiments. All authors discussed the results and prepared the manuscript.

Corresponding authors

Correspondence to Xianzhe Chen or Ramamoorthy Ramesh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 NV magnetometry image for BiFeO3.

a, b, Schematic illustrations of ferroelectric domains and the corresponding spin cycloid propagation directions before and after polarization switching. The pink arrows represent the ferroelectric polarization orientations. c, d,Magnetic stray field distribution recorded with scanning NV magnetometer for 100 nm BiFeO3 before and after polarization switching. The blue arrows are the spin cycloid propagation wave vector. e, f, Magnetic stray field distribution recorded with scanning NV magnetometer for 30 nm and 100 nm BiFeO3 respectively.

Extended Data Fig. 2 Calculated magnon band for BiFeO3.

a, b magnon band dispersion for BiFeO3 with negative and positive Dzyaloshinskii-Moriya interaction respectively. In the absence of the Dzyaloshinskii-Moriya interaction (D=0), magnon bands are doubly degenerate due to the combined PT-symmetry (black dashed line). These degenerate magnon bands are linearly-polarized. Introducing Dzyaloshinskii-Moriya interaction breaks the degeneracy, resulting in two shifted circularly polarized magnon bands (lines in color).

Extended Data Fig. 3 Schematics for magnon-mediated MESO logic device.

a, Same schematics duplicated from Fig. 1c. b, Modularized circuit schematics. The top module is the ferroelectric switch module, where the input voltage \({V}_{{{{\rm{in}}}}}^{c}\) switches the direction of the ferroelectric polarization PFE in the magnetoelectric layer. Such polarization change also affects the spin conductance Gse and Gsf of the ME layer. The leftmost and rightmost modules represent the spin Hall effect (SHE) process in the top SOC layer (injector) and the inverse spin Hall effect (ISHE) process in the bottom SOC layer (detector), respectively. The current-controlled spin current source \({I}_{{{{\rm{SHE}}}}}^{S}\) in the SHE module depends on the output charge current of the top SOC layer. Similarly, the current-controlled charge current source \({I}_{{{{\rm{ISHE}}}}}^{C}\) in the ISHE module depends on the output spin current of the bottom SOC layer. The parameters ηSHE and ηISHE represent the charge-to-spin and spin-to-charge current conversion rates, respectively. The module in the middle describes the magnon transport process in the ME layer, which is connected to the SHE and ISHE modules through the spin conductance at the interfaces between ME and SOC layers, denoted as GAFM-NM. c, Lossy Buffer logic simulation result for the equivalent circuit in b where the output follows the input pulse signal characteristics.

Extended Data Fig. 4 Structure, magnetization, ferroelectric domain structure measurements for La0.7Sr0.3MnO3/BiFeO3/SrIrO3 heterostructure.

a, HAADF image of La0.7Sr0.3MnO3/BiFeO3/SrIrO3 tri-layer, displaying atomically sharp interfaces and high crystal quality. b, HF etched and thermally annealed SrTiO3 substrate with atomic steps and terraces. c, Magnetization vs applied magnetic field (MH) measurement for La0.7Sr0.3MnO3/BiFeO3/SrIrO3, showing a coercivity of ~ 25 Oe and a saturation magnetization ~ 320 emu/cc. d, In-plane piezoresponse microscopy (PFM) image of the BiFeO3 layer. e, High resolution XRD 2θ-ω scan of the tri-layer.

Extended Data Fig. 5 Ferroelectric control of spin transport enabled by the interface chemistry.

a, A schematic for La0.7Sr0.3MnO3/BiFeO3 atomic stacking, where La0.7Sr0.3O-MnO2-BiO-FeO2 is stacked at the interface. b, A schematic for La0.7Sr0.3MnO3/BiFeO3 atomic stacking, where MnO2-La0.7Sr0.3O-FeO2-BiO is stacked at the interface. c, Corresponding piezoresponse for La0.7Sr0.3O-MnO2-BiO-FeO2 stacking (La0.7Sr0.3MnO3(12 nm)/BiFeO3(50 nm)), with top and bottom being phase and amplitude respectively. The solid line denotes the shifting of the piezoresponse curves to zero volts, indicating an upward ferroelectric polarization for La0.7Sr0.3O-MnO2-BiO-FeO2 stacking. d, Corresponding piezoresponse for MnO2-La0.7Sr0.3O-FeO2-BiO stacking (La0.7Sr0.3MnO3(12 nm)/BiFeO3(50 nm)), with the top and bottom being phase and amplitude respectively. The solid line denotes the shifting of the piezoresponse curves to zero volts, indicating a downward ferroelectric polarization for MnO2-La0.7Sr0.3O-FeO2-BiO stacking. e,f, An artistic illustration for upward and downward ferroelectric polarization. g, Spin orbit torque efficiency for BiFeO3 with different polarization states as a function of BiFeO3 thicknesses. The red (blue) data points represent the spin-orbit torque efficiency for La0.7Sr0.3MnO3/BiFeO3/SrIrO3, where BiFeO3 has an upward (downward) polarization. Data are presented as mean ± standard deviation over 4 devices on a sample.

Extended Data Fig. 6 Non-local voltage measured with sweeping external magnetic field.

dc non-local voltage as a function of applied magnetic field at room temperature. The applied dc current is 10 μA.

Extended Data Fig. 7 Electric field controlled non-local spin transport measurements with dc current input.

A positive electric field of 150 kV/cm and a negative electric field of -300 kV/cm are applied alternately, with dc non-local voltages measured in between the electric fields as shown in the measurement protocol. The corresponding non-local voltage between each electric field is shown below. Data are presented as mean ± standard deviation of over 50 data points on a device.

Extended Data Fig. 8 Power-dependent first-harmonic measurements in 71 degree domain BFO.

a,b,c, Nonlocal out-put voltage with electric fields (voltage) scan when applying current of 2uA (a), 3uA (b), 5uA (c). d, Summary of power-dependent out-put voltages. Inset shows the PFM image. Data are presented as mean ± standard deviation of over 50 data points on a device.

Extended Data Fig. 9 AFM and SQUID characterization.

a, An AFM image for SrIrO3 (15 nm) grown on YIG/GGG structure. b, An AFM image for SrIrO3 (15 nm) grown on NiFe2O4/STO structure. c, Magnetization as a function of temperature from 10 - 400 K, with a magnetic field of 1500 Oe applied in the plane. d, Magnetization as a function in-plane magnetic field at 300 K.

Extended Data Fig. 10 Non-local control experiments on NiFe2O4 (70 nm)/Pt (5 nm) and NiFe2O4 (70 nm)/SrIrO3 (15 nm).

First harmonic voltage signal is displayed in a and b for NiFe2O4/Pt and NiFe2O4/SrIrO3 respectively. An ac current with an amplitude of 100 μA and a frequency of 17 Hz was applied in a channel that is separated by 1 μm from the detection channel.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, discussion and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Chen, X., Li, Y. et al. Manipulating chiral spin transport with ferroelectric polarization. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01854-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing