Skip to main content
Log in

A rice GT61 glycosyltransferase possesses dual activities mediating 2-O-xylosyl and 2-O-arabinosyl substitutions of xylan

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A member of the rice GT61 clade B is capable of transferring both 2-O-xylosyl and 2-O-arabinosyl residues onto xylan and another member specifically catalyses addition of 2-O-xylosyl residue onto xylan.

Abstract

Grass xylan is substituted predominantly with 3-O-arabinofuranose (Araf) as well as with some minor side chains, such as 2-O-Araf and 2-O-(methyl)glucuronic acid [(Me)GlcA]. 3-O-Arabinosylation of grass xylan has been shown to be catalysed by grass-expanded clade A members of the glycosyltransferase family 61. However, glycosyltransferases mediating 2-O-arabinosylation of grass xylan remain elusive. Here, we performed biochemical studies of two rice GT61 clade B members and found that one of them was capable of transferring both xylosyl (Xyl) and Araf residues from UDP-Xyl and UDP-Araf, respectively, onto xylooligomer acceptors, whereas the other specifically catalysed Xyl transfer onto xylooligomers, indicating that the former is a xylan xylosyl/arabinosyl transferase (named OsXXAT1 herein) and the latter is a xylan xylosyltransferase (named OsXYXT2). Structural analysis of the OsXXAT1- and OsXYXT2-catalysed reaction products revealed that the Xyl and Araf residues were transferred onto O-2 positions of xylooligomers. Furthermore, we demonstrated that OsXXAT1 and OsXYXT2 were able to substitute acetylated xylooligomers, but only OsXXAT1 could xylosylate GlcA-substituted xylooligomers. OsXXAT1 and OsXYXT2 were predicted to adopt a GT-B fold structure and molecular docking revealed candidate amino acid residues at the predicted active site involved in binding of the nucleotide sugar donor and the xylohexaose acceptor substrates. Together, our results establish that OsXXAT1 is a xylan 2-O-xylosyl/2-O-arabinosyl transferase and OsXYXT2 is a xylan 2-O-xylosyltransferase, which expands our knowledge of roles of the GT61 family in grass xylan synthesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated during this study are included in this article and its Supplementary Figure files.

Abbreviations

AA:

Anthranilic acid

Araf :

Arabinofuranose

GT:

Glycosyltransferase

MALDI-TOF:

Matrix-assisted laser desorption ionisation time-of-flight

(Me)GlcA:

(Methyl)glucuronic acid

NMR:

Nuclear magnetic resonance

OsXXAT1:

Xylan 2-O-xylosyl/2-O-arabinosyl transferase 1

OsXYXT2:

Xylan 2-O-xylosyltransferase 2

XAT:

Xylan arabinosyltransferase

Xyl:

Xylose

References

  • Amos RA, Mohnen D (2019) Critical review of plant cell wall matrix polysaccharide glycosyltransferase activities verified by heterologous protein expression. Front Plant Sci 10:915

    PubMed  PubMed Central  Google Scholar 

  • Anders N, Wilkinson MD, Lovegrove A, Freeman J, Tryfona T, Pellny TK et al (2012) Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses. Proc Natl Acad Sci U S A 109:989–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busse-Wicher M, Wicher KB, Kusche-Gullberg M (2014) The exostosin family: proteins with many functions. Matrix Biol 35:25–33

    CAS  PubMed  Google Scholar 

  • Chang A, Singh S, Phillips GN Jr, Thorson JS (2011) Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr Opin Biotechnol 22:800–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiniquy D, Sharma V, Schultink A, Baidoo EE, Rautengarten C, Cheng K et al (2012) XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan. Proc Natl Acad Sci U S A 109:17117–17122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coutinho PM, Stam M, Blanc E, Henrissat B (2003) Why are there so many carbohydrate-active enzyme-related genes in plants? Trends Plant Sci 8:563–565

    CAS  PubMed  Google Scholar 

  • Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F et al (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104:15572–15577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS et al (2004) Guar seed β-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    CAS  PubMed  Google Scholar 

  • Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–3898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engle KA, Amos RA, Yang JY, Glushka J, Atmodjo MA, Tan L et al (2022) Multiple Arabidopsis galacturonosyltransferases synthesize polymeric homogalacturonan by oligosaccharide acceptor-dependent or de novo synthesis. Plant J 109:1441–1456

    CAS  PubMed  Google Scholar 

  • Fauré R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB et al (2009) A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls. Aust J Chem 62:533–537

    Google Scholar 

  • Feijao C, Morreel K, Anders N, Tryfona T, Busse-Wicher M, Kotake T et al (2022) Hydroxycinnamic acid modified xylan side chains and their cross-linking products in rice cell walls are reduced in the Xylosyl arabinosyl substitution of xylan 1 mutant. Plant J 109:1152–1167

    CAS  PubMed  Google Scholar 

  • Fischer MH, Yu N, Gray GR, Ralph J, Anderson L, Marlett JA (2004) The gel-forming polysaccharide of psyllium husk (Plantago ovata Forsk). Carbohydr Res 339:2009–2017

    CAS  PubMed  Google Scholar 

  • Hoffmann RA, Leeflang BR, de Barse MM, Kamerling JP, Vliegenthart JF (1991) Characterisation by 1H-n.m.r. spectroscopy of oligosaccharides, derived from arabinoxylans of white endosperm of wheat, that contain the elements ->4)[alpha-L-Araf-(1->3)]-beta-D-Xylp-(1-> or ->4)[alpha-L-Araf-(1->2)][alpha-L-Araf-(1->3)]-beta-D-Xylp-(1->. Carbohydr Res 221:63–81

    CAS  PubMed  Google Scholar 

  • Höije A, Sandstrom C, Roubroeks JP, Andersson R, Gohil S, Gatenholm P (2006) Evidence of the presence of 2-O-β-D-xylopyranosyl-α-L-arabinofuranose side chains in barley husk arabinoxylan. Carbohydr Res 341:2959–2966

    PubMed  Google Scholar 

  • Holm L (2020) DALI and the persistence of protein shape. Protein Sci 29:128–140

    CAS  PubMed  Google Scholar 

  • Imae R, Kuwabara N, Manya H, Tanaka T, Tsuyuguchi M, Mizuno M et al (2021) The structure of POMGNT2 provides new insights into the mechanism to determine the functional O-mannosylation site on α-dystroglycan. Genes Cells 26:485–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Ichita J, Matsue H, Ono H, Maeda I (2002) Fluorescent labeling of pectic oligosaccharides with 2-aminobenzamide and enzyme assay for pectin. Carbohydr Res 337:1023–1032

    CAS  PubMed  Google Scholar 

  • Jensen JK, Sørensen SO, Harholt J, Geshi N, Sakuragi Y, Møller I et al (2008) Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. Plant Cell 20:1289–1302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen JK, Schultink A, Keegstra K, Wilkerson CG, Pauly M (2012) RNA-Seq analysis of developing nasturtium seeds (Tropaeolum majus): identification and characterization of an additional galactosyltransferase involved in xyloglucan biosynthesis. Mol Plant 5:984–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen JK, Johnson N, Wilkerson CG (2013) Discovery of diversity in xylan biosynthetic genes by transcriptional profiling of a heteroxylan containing mucilaginous tissue. Front Plant Sci 4:183

    PubMed  PubMed Central  Google Scholar 

  • Jensen JK, Johnson NR, Wilkerson CG (2014) Arabidopsis thaliana IRX10 and two related proteins from psyllium and Physcomitrella patens are xylan xylosyltransferases. Plant J 80:207–215

    CAS  PubMed  Google Scholar 

  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Chandrasekar B, Rea AC, Danhof L, Zemelis-Durfee S, Thrower N et al (2020) The synthesis of xyloglucan, an abundant plant cell wall polysaccharide, requires CSLC function. Proc Natl Acad Sci U S A 117:20316–20324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S et al (2022) PubChem 2023 update. Nucleic Acids Res 51:D1373–D1380

    PubMed Central  Google Scholar 

  • Kumar M, Campbell L, Turner S (2016) Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67:515–531

    CAS  PubMed  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    CAS  PubMed  Google Scholar 

  • Laursen T, Stonebloom SH, Pidatala VR, Birdseye DS, Clausen MH, Mortimer JC et al (2018) Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides. Plant J 94:340–351

    CAS  PubMed  Google Scholar 

  • Lee C, Zhong R, Richardson EA, Himmelsbach DS, McPhail BT, Ye Z-H (2007) The PARVUS gene is expressed in cells undergoing secondary wall thickening and is essential for glucuronoxylan biosynthesis. Plant Cell Physiol 48:1659–1672

    CAS  PubMed  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye Z-H (2009) The F8H glycosyltransferase is a functional paralog of FRA8 involved in glucuronoxylan biosynthesis in Arabidopsis. Plant Cell Physiol 50:812–827

    CAS  PubMed  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci U S A 102:2221–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Little A, Schwerdt JG, Shirley NJ, Khor SF, Neumann K, O’Donovan LA et al (2018) Revised phylogeny of the cellulose synthase gene superfamily: insights into cell wall evolution. Plant Physiol 177:1124–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madson M, Dunand C, Li X, Verma R, Vanzin GF, Caplan J et al (2003) The MUR3 gene of Arabidopsis encodes a xyloglucan galactosyltransferase that is evolutionarily related to animal exostosins. Plant Cell 15:1662–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCleary BV, McKie VA, Draga A, Rooney E, Mangan D, Larkin J (2015) Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase. Carbohydr Res 407:79–96

    CAS  PubMed  Google Scholar 

  • Mortimer JC, Miles GP, Brown DM, Zhang Z, Segura MP, Weimar T et al (2010) Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass. Proc Natl Acad Sci U S A 107:17409–17414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pagny S, Bouissonnie F, Sarkar M, Follet-Gueye ML, Driouich A, Schachter H et al (2003) Structural requirements for Arabidopsis β1,2-xylosyltransferase activity and targeting to the Golgi. Plant J 33:189–203

    CAS  PubMed  Google Scholar 

  • Peña MJ, Zhong R, Zhou G-K, Richardson EA, O’Neill MA, Darvill AG et al (2007) Arabidopsis irregular xylem8 and irregular xylem9: Implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    PubMed  PubMed Central  Google Scholar 

  • Pena MJ, Kong Y, York WS, O’Neill MA (2012) A galacturonic acid-containing xyloglucan is involved in Arabidopsis root hair tip growth. Plant Cell 24:4511–4524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  PubMed  Google Scholar 

  • Phan JL, Tucker MR, Khor SF, Shirley N, Lahnstein J, Beahan C et al (2016) Differences in glycosyltransferase family 61 accompany variation in seed coat mucilage composition in Plantago spp. J Exp Bot 67:6481–6495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheible W-R, Pauly M (2004) Glycosyltransferases and cell wall biosynthesis: novel players and insights. Curr Opin Plant Biol 7:285–295

    CAS  PubMed  Google Scholar 

  • Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    CAS  PubMed  Google Scholar 

  • Tryfona T, Bourdon M, Delgado Marques R, Busse-Wicher M, Vilaplana F, Stott K et al (2023) Grass xylan structural variation suggests functional specialization and distinctive interaction with cellulose and lignin. Plant J 113:1004–1020

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS (2014) Two Arabidopsis proteins synthesize acetylated xylan in vitro. Plant J 80:197–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verbruggen MA, Spronk BA, Schols HA, Beldman G, Voragen AG, Thomas JR et al (1998) Structures of enzymically derived oligosaccharides from sorghum glucuronoarabinoxylan. Carbohydr Res 306:265–274

    CAS  PubMed  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    CAS  PubMed  Google Scholar 

  • Voiniciuc C, Günl M, Schmidt MH, Usadel B (2015) Highly branched xylan made by IRREGULAR XYLEM14 and MUCILAGE-RELATED21 links mucilage to Arabidopsis seeds. Plant Physiol 169:2481–2495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wende G, Fry SC (1997) 2-O-β-D-Xylopyranosyl-(5-O-feruloyl)-L-arabinose, a widespread component of grass cell walls. Phytochemistry 44:1019–1030

    CAS  Google Scholar 

  • Yang JY, Halmo SM, Praissman J, Chapla D, Singh D, Wells L et al (2021) Crystal structures of β-1,4-N-acetylglucosaminyltransferase 2: structural basis for inherited muscular dystrophies. Acta Crystallogr D Struct Biol 77:486–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z-H, Zhong R (2022) Outstanding questions on xylan biosynthesis. Plant Sci 325:111476

    CAS  PubMed  Google Scholar 

  • Yu L, Yoshimi Y, Cresswell R, Wightman R, Lyczakowski JJ, Wilson LFL et al (2022) Eudicot primary cell wall glucomannan is related in synthesis, structure, and function to xyloglucan. Plant Cell 34:4600–4622

    PubMed  PubMed Central  Google Scholar 

  • Zhong R, Peña MJ, Zhou G-K, Nairn CJ, Wood-Jones A, Richardson EA et al (2005) Arabidopsis Fragile Fiber8, which encodes a putative glucuronyltransferase, is essential for normal secondary wall synthesis. Plant Cell 17:3390–3408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong R, Cui D, Dasher RL, Ye Z-H (2018a) Biochemical characterization of rice xylan O-acetyltransferases. Planta 247:1489–1498

    CAS  PubMed  Google Scholar 

  • Zhong R, Cui D, Phillips DR, Ye Z-H (2018b) A novel rice xylosyltransferase catalyzes the addition of 2-O-xylosyl side chains onto the xylan backbone. Plant Cell Physiol 59:554–565

    CAS  PubMed  Google Scholar 

  • Zhong R, Cui D, Phillips DR, Sims NT, Ye Z-H (2021) Functional analysis of GT61 glycosyltransferases from grass species in xylan substitutions. Planta 254:131

    CAS  PubMed  Google Scholar 

  • Zhong R, Lee C, Cui D, Phillips DR, Adams ER, Jeong HY et al (2022a) Identification of xylan arabinosyl 2-O-xylosyltransferases catalyzing the addition of 2-O-xylosyl residue onto arabinosyl side chains of xylan in grass species. Plant J 112:193–206

    CAS  PubMed  Google Scholar 

  • Zhong R, Phillips DR, Ye Z-H (2022b) Independent recruitment of glycosyltransferase family 61 members for xylan substitutions in conifers. Planta 256:70

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [grant No. DE-FG02-03ER15415].

Author information

Authors and Affiliations

Authors

Contributions

RZ and ZHY conceived and designed research. RZ, DZ, DRP, ERA, LC, JPR, BCW and ZHY conducted experiments and analysed data. RZ, DZ and ZHY wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Zheng-Hua Ye.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by De-Yu Xie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2861 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, R., Zhou, D., Phillips, D.R. et al. A rice GT61 glycosyltransferase possesses dual activities mediating 2-O-xylosyl and 2-O-arabinosyl substitutions of xylan. Planta 259, 115 (2024). https://doi.org/10.1007/s00425-024-04396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04396-0

Keywords

Navigation