Unusual redox stability of pentavalent uranium with hetero-bifunctional phosphonocarboxylate: insight into aqueous speciation

Abstract

The +5 state is an unusual oxidation state of uranium due to its instability in the aqueous phase. As a result, gaining information about its aqueous speciation is extremely difficult. The present work is an attempt in that direction and it provides insight into the existence of a new pentavalent species in the presence of hetero-bifunctional phosphonocarboxylate (PC) chelators, other than the carbonate ion, in the aqueous medium. The aqueous chemistry of pentavalent uranium species with three environmentally relevant PCs was probed using electrochemical and DFT methods to understand the redox energy and kinetics of conversion of the U(VI)/U(V) couple, stability, structure, stoichiometry, binding modes, etc. Interestingly, pentavalent uranium complexes with PCs are quite persistent over a wide range of pH starting from acidic to alkaline conditions. The PC chelators block the cation–cation interaction (CCI) of U(V) through strong hetero-bidentate chelation and intermolecular hydrogen bonding (IMHB) interactions which stabilize the pentavalent metal ion against disproportionation. For uranyl species in the presence of PCs, acting as chelators, CV plots were obtained at varying pH values from 2 to 8. The obtained results indicate an irreversible single redox peak involving U(VI) to U(V) conversion and association of a coupled chemical reaction with the electron transfer step. ESI-MS studies were performed to understand the speciation effect on the U(VI)/U(V) redox couple with varying pH. Speciation modelling of U(V) with the PC ligands was carried out, which indicated that the U(V) is redox stable in nearly 47% of the pH region in the presence of the PCs as compared to the carboxylate-based chelators. The free energy and reduction potential of the U(V) complexes and the reduction free energy and disproportionation free energy for the U(VI)/U(V) couple were determined by DFT computations in the presence of the PCs. In situ spectroelectrochemical spectra were recorded to provide evidence for the existence of U(V) species with PCs in the aqueous medium and to acquire its absorption spectra. The present study is highly significant for understanding the coordination chemistry of pentavalent uranium species, accurate modelling of uranium, and isolation of U(V).

Graphical abstract: Unusual redox stability of pentavalent uranium with hetero-bifunctional phosphonocarboxylate: insight into aqueous speciation

Supplementary files

Article information

Article type
Paper
Submitted
19 Jan 2024
Accepted
21 Mar 2024
First published
26 Mar 2024

Dalton Trans., 2024, Advance Article

Unusual redox stability of pentavalent uranium with hetero-bifunctional phosphonocarboxylate: insight into aqueous speciation

A. Srivastava, Sk. M. Ali, R. M. R. Dumpala, S. Kumar, P. Kumar, N. Rawat and P. K. Mohapatra, Dalton Trans., 2024, Advance Article , DOI: 10.1039/D4DT00173G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements