Inorganic–organic hybrid Cu–dipyridyl semiconducting polymers based on the redox-active cluster [SFe3(CO)9]2−: filling the gap in iron carbonyl chalcogenide polymers

Abstract

The construction of sulfur-incorporated cluster-based coordination polymers was limited and underexplored due to the lack of efficient synthetic routes. Herein, we report facile mechanochemical ways toward a new series of SFe3(CO)9-based dipyridyl–Cu polymers by three-component reactions of [Et4N]2[SFe3(CO)9] ([Et4N]2[1]) and [Cu(MeCN)4][BF4] with conjugated or conjugation-interrupted dipyridyl ligands, 1,2-bis(4-pyridyl)ethylene (bpee), 1,2-bis(4-pyridyl)ethane (bpea), 4,4′-dipyridyl (dpy), or 1,3-bis(4-pyridyl)propane (bpp), respectively. X-ray analysis showed that bpee-containing 2D polymers demonstrated unique SFe3(CO)9 cluster-armed and cluster-one-armed coordination modes via the hypervalent μ5-S atom. These S–Fe–Cu polymers could undergo flexible structural transformations with the change of cluster bonding modes by grinding with stoichiometric amounts of dipyridyls or 1/[Cu(MeCN)4]+. They exhibited semiconducting behaviors with low energy gaps of 1.55–1.79 eV and good electrical conductivities of 3.26 × 10−8–1.48 × 10−6 S cm−1, tuned by the SFe3(CO)9 cluster bonding modes accompanied by secondary interactions in the solid state. The electron transport efficiency of these polymers was further elucidated by solid-state packing, X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), density of states (DOS), and crystal orbital Hamilton population (COHP) analysis. Finally, the solid-state electrochemistry of these polymers demonstrated redox-active behaviors with cathodically-shifted patterns compared to that of [Et4N]2[1], showing that their efficient electron communication was effectively enhanced by introducing 1 and dipyridyls as hybrid ligands into Cu+-containing networks.

Graphical abstract: Inorganic–organic hybrid Cu–dipyridyl semiconducting polymers based on the redox-active cluster [SFe3(CO)9]2−: filling the gap in iron carbonyl chalcogenide polymers

Supplementary files

Article information

Article type
Paper
Submitted
27 Jan 2024
Accepted
24 Mar 2024
First published
26 Mar 2024

Dalton Trans., 2024, Advance Article

Inorganic–organic hybrid Cu–dipyridyl semiconducting polymers based on the redox-active cluster [SFe3(CO)9]2−: filling the gap in iron carbonyl chalcogenide polymers

M. Hsu, R. Y. Lin, T. Sun, Y. Huang, M. Li, Y. Li, H. Chen and M. Shieh, Dalton Trans., 2024, Advance Article , DOI: 10.1039/D4DT00254G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements