skip to main content
survey

Mobile Near-infrared Sensing—A Systematic Review on Devices, Data, Modeling, and Applications

Published:10 April 2024Publication History
Skip Abstract Section

Abstract

Mobile near-infrared sensing is becoming an increasingly important method in many research and industrial areas. To help consolidate progress in this area, we use the PRISMA guidelines to conduct a systematic review of mobile near-infrared sensing, including (1) existing prototypes and commercial products, (2) data collection techniques, (3) machine learning methods, and (4) relevant application areas. Our work measures historical and current trends and identifies current challenges and future directions for this emerging topic.

Skip Supplemental Material Section

Supplemental Material

REFERENCES

  1. [1] Abasi S., Minaei S., Jamshidi B., and Fathi D.. 2020. Development of an optical smart portable instrument for fruit quality detection. IEEE Trans. Instrument. Measure. 70 (July 2020). Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Abtahi M., Cay G., Saikia M. J., and Mankodiya K.. 2016. Designing and testing a wearable, wireless fNIRS patch. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’16). 62986301. Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Aira Javier, Olivares Teresa, and Delicado Francisco M.. 2022. SpectroGLY: A low-cost IoT-based ecosystem for the detection of glyphosate residues in waters. IEEE Trans. Instrument. Measure. 71 (2022), 110. Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Alam M. W., Wahid K. A., Islam M. F., Bernhard W., Geyer C. R., and Vizeacoumar F. J.. 2019. A low-cost and portable smart instrumentation for detecting colorectal cancer cells. Appl. Sci. (Switzerland) 9 (2019), 757768. Issue 17. Google ScholarGoogle ScholarCross RefCross Ref
  5. [5] Arisandy Yudha Putra, Seminar Kudang Boro, Purwanto Y. Aris, and Hidayat Yayat. 2022. Processing near-infrared spectroscopy signal to calculate soil macronutrient: A comparison of some machine learning approaches. In Proceedings of the IEEE Creative Communication and Innovative Technology (ICCIT’22). 19. Google ScholarGoogle ScholarCross RefCross Ref
  6. [6] Aykas D. P., Ball C., Menevseoglu A., and Rodriguez-Saona L. E.. 2020. In situ monitoring of sugar content in breakfast cereals using a novel ft-nir spectrometer. Appl. Sci. (Switzerland) 10 (2020), 111. Issue 24. Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Aykas D. P., Ball C., Sia A., Zhu K., Shotts M.-L., Schmenk A., and Rodriguez-Saona L.. 2020. In situ screening of soybean quality with a novel handheld near-infrared sensor. Sensors (Switzerland) 20 (2020), 119. Issue 21. Google ScholarGoogle ScholarCross RefCross Ref
  8. [8] Aznan Aimi, Viejo Claudia Gonzalez, Pang Alexis, and Fuentes Sigfredo. 2022. Rapid detection of fraudulent rice using low-cost digital sensing devices and machine learning. Sensors 22, 22 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Bak SuJin, Park Jinwoo, Shin Jaeyoung, and Jeong Jichai. 2019. Open-access fNIRS dataset for classification of unilateral finger- and foot-tapping. Electronics 8, 12 (2019). Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Balakit Raymart B., Cruz Jennifer C. Dela, Reaño Rose Anne L., Castillo Acer Jay G., Garcia Christian Julius R., Libang Ma. Caira Gail M., Mallapre Joshua S., Navarro Anthony D., Pangyarihan Rosemarie L., Pariño Krisha Mae N., and Wenceslao Erecha B.. 2022. SB21: Portable watermelon ripeness detector through acoustics analysis and spectral identification. In Proceedings of the IEEE 14th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM’22). 16. Google ScholarGoogle ScholarCross RefCross Ref
  11. [11] Batjes N. H.. 2014. A globally distributed soil spectral library visible near infrared diffuse reflectance spectra. (2014).Google ScholarGoogle Scholar
  12. [12] Beppler E. C., Dieffenderfer J., Songkakul T., Krystal A., and Bozkurt A.. 2018. An ultra-miniaturized near infrared spectroscopy system to assess sleep apnea in children with down syndrome. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’18). 28772880. Google ScholarGoogle ScholarCross RefCross Ref
  13. [13] Berzaghi P., Cherney J. H., and Casler M. D.. 2021. Prediction performance of portable near infrared reflectance instruments using preprocessed dried, ground forage samples. Comput. Electron. Agric. 182 (2021). Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Beć Krzysztof B., Grabska Justyna, and Huck Christian W.. 2021. Principles and applications of miniaturized near-infrared (NIR) spectrometers. Chem. Eur. J. 27, 5 (2021), 15141532. Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Beć Krzysztof B., Grabska Justyna, and Huck Christian W.. 2022. Miniaturized NIR spectroscopy in food analysis and quality control: Promises, challenges, and perspectives. Foods 11, 10 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Bhandari S., Raheja A., Chaichi M. R., Green R. L., Do D., Ansari M., Pham F., Wolf J., Sherman T., and Espinas A.. 2018. Ground-truthing of UAV-based remote sensing data of citrus plants. In Proceedings of the International Society for Optical Engineering (SPIE’18). Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Bhutta M. R. and Hong K.-S.. 2013. A new near-infrared spectroscopy system for detection of hemoglobin and water concentration changes during a human activity. In Proceedings of the International Conference on Robotics, Biomimetics, Intelligent Computational Systems (ROBIONETICS’13), 224227. Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Blei David M., Ng Andrew Y., and Jordan Michael I.. 2003. Latent dirichlet allocation. J. Mach. Learn. Res. 3 (Mar.2003), 9931022.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Bojinov Hristo, Michalevsky Yan, Nakibly Gabi, and Boneh Dan. 2014. Mobile device identification via sensor fingerprinting. Retrieved from https://arXiv:1408.1416. Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Bronkhorst M., Mukisa R., Colier W. N. J. M., Stothers L., and Macnab A. J.. 2019. Functional near infrared spectroscopy (fNIRS) in pigmented subjects: A maneuver to confirm sufficient transcutaneous photon transmission for measurement of hemodynamic change in the anterior cortex. In Proceedings of the International Society for Optical Engineering (SPIE’19). Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Buda R. A. and Addi M. M.. 2014. A portable non-invasive blood glucose monitoring device. In Proceedings of the IEEE Conference on Biomedical Engineering and Sciences (IECBES’14). Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Burns Donald A. and Ciurczak Emil W.. 2007. Handbook of near-infrared analysis. CRC Press, Boca Raton, FL.Google ScholarGoogle ScholarCross RefCross Ref
  23. [23] Cao T., Tao L., Liu D., Wang Q., and Sun J.. 2020. Design and realization of blood oxygen and heart rate sensor nodes in wireless body area network. In Proceedings of the IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA’20), 469473. Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Cardoso Wilson J., Gomes João G. R., Roque Jussara V., Barbosa Márcio H. P., and Teófilo Reinaldo F.. 2022. Dehydration as a tool to improve predictability of sugarcane juice carbohydrates using near-infrared spectroscopy based PLS models. Chemometr. Intell. Lab. Syst. 220 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Chandrasekaran Indurani, Panigrahi Shubham Subrot, Ravikanth Lankapalli, and Singh Chandra B.. 2019. Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits: An overview. Food Anal. Methods 12, 11 (2019), 24382458. Google ScholarGoogle ScholarCross RefCross Ref
  26. [26] Chen Cheng, Ma Zhouchen, Liu Zhenhong, Zhou Linfeng, Wang Guoxing, Li Yongfu, and Zhao Jian. 2022. An energy-efficient wearable functional near-infrared spectroscopy system employing dual-level adaptive sampling technique. IEEE Trans. Biomed. Circ. Syst. 16, 1 (Feb.2022), 119128. Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Chen Wei-Liang, Wagner Julie, Heugel Nicholas, Sugar Jeffrey, Lee Yu-Wen, Conant Lisa, Malloy Marsha, Heffernan Joseph, Quirk Brendan, Zinos Anthony, Beardsley Scott A., Prost Robert, and Whelan Harry T.. 2020. Functional near-infrared spectroscopy and its clinical application in the field of neuroscience: Advances and future directions. Front. Neurosci. 14 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  28. [28] Chen Y., Berkel N. van, Luo C., Sarsenbayeva Z., and Kostakos V.. 2020. Application of miniaturized near-infrared spectroscopy in pharmaceutical identification. Smart Health 18 (2020), 163168. Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Chen Yanjiao, Zheng Baolin, Zhang Zihan, Wang Qian, Shen Chao, and Zhang Qian. 2020. Deep learning on mobile and embedded devices: State-of-the-art, challenges, and future directions. ACM Comput. Surv. 53, 4, Article 84 (Aug.2020), 37 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. [30] Cheng C. J., Wu S. Y., Huang W. C., Hou H. W., and Fang W. C.. 2014. A wireless near-infrared imaging system design for breast tumor detection. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE’14). Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Cherney J. H., Digman M. F., and Cherney D. J.. 2021. Handheld NIRS for forage evaluation. Comput. Electr. Agric. 190 (2021). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Chi Y., Honda K., and Wei J.. 2021. Portable photoglottography for monitoring vocal fold vibrations in speech production. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’21). 64386442. Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Chowdhury S. R., Nandi B., and Mondal P.. 2018. A non-invasive blood insulin and glucose monitoring system based on near-infrared spectroscopy with remote data logging. In Proceedings of the IEEE Symposium on Computer-Based Medical Systems. 274279. Google ScholarGoogle ScholarCross RefCross Ref
  34. [34] Chowdhury T., Khan S., Faruk T., and Islam M. K.. 2021. Design and implementation of a low-cost real-time vein imaging for developing countries. In Proceedings of the International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI’21). Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Cortés V., Blasco J., Aleixos N., Cubero S., and Talens P.. 2019. Monitoring strategies for quality control of agricultural products using visible and near-infrared spectroscopy: A review. Trends Food Sci. Technol. 85 (2019), 138148. Google ScholarGoogle ScholarCross RefCross Ref
  36. [36] Courand Aldrig, Metz Maxime, Héran Daphné, Feilhes Carole, Prezman Fanny, Serrano Eric, Bendoula Ryad, and Ryckewaert Maxime. 2022. Evaluation of a robust regression method (RoBoost-PLSR) to predict biochemical variables for agronomic applications: Case study of grape berry maturity monitoring. Chemometr. Intell. Lab. Syst. 221 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Dai Y. and Luo J.. 2015. Design of noninvasive pulse oximeter based on bluetooth 4.0 BLE. In Proceedings of the 7th International Symposium on Computational Intelligence and Design (ISCID’14). 100103. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. [38] Daoud S., Villeburn M. J., Bailey K. D., and Kinloch G.. 2014. Novel real-time nondestructive technology for chemical and structural health management of solid rocket propellants. In Proceedings of the Annual Conference of the Prognostics and Health Management Society (PHM’14), 402414.Google ScholarGoogle Scholar
  39. [39] Debiasi L., Kauba C., Prommegger B., and Uhl A.. 2018. Near-infrared illumination add-on for mobile hand-vein acquisition. In Proceedings of the IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS’18). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. [40] Delgado-Santos Paula, Stragapede Giuseppe, Tolosana Ruben, Guest Richard, Deravi Farzin, and Vera-Rodriguez Ruben. 2022. A survey of privacy vulnerabilities of mobile device sensors. ACM Comput. Surv. 54, 11s, Article 224 (Sep.2022), 30 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Dennis Simon, Garrett Paul, Yim Hyungwook, Hamm Jihun, Osth Adam F., Sreekumar Vishnu, and Stone Ben. 2019. Privacy versus open science. Behav. Res. Methods 51, 4 (2019), 18391848. Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Dey Anind K., Wac Katarzyna, Ferreira Denzil, Tassini Kevin, Hong Jin-Hyuk, and Ramos Julian. 2011. Getting closer: An empirical investigation of the proximity of user to their smart phones. In Proceedings of the 13th International Conference on Ubiquitous Computing (UbiComp’11). ACM, New York, NY, 163172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. [43] Dogan Mustafa Doga, Taka Ahmad, Lu Michael, Zhu Yunyi, Kumar Akshat, Gupta Aakar, and Mueller Stefanie. 2022. InfraredTags: Embedding invisible AR markers and barcodes using low-cost, infrared-based 3d printing and imaging tools. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’22). ACM, New York, NY, Article 269, 12 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. [44] Dong S. and Jeong J.. 2019. Onset classification in hemodynamic signals measured during three working memory tasks using wireless functional near-infrared spectroscopy. IEEE J. Select. Top. Quant. Electron. 25, 1 (2019). Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Du Jinya, Yang Shuangshuang, Qiao Yuchun, Lu Huiting, and Dong Haifeng. 2021. Recent progress in near-infrared photoacoustic imaging. Biosens. Bioelectr. 191 (2021), 113478. Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Du X., Wang J., Dong D., and Zhao X.. 2019. Development and testing of a portable soil nitrogen detector based on near-infrared spectroscopy. In Proceedings of the IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC’19). 822826. Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Du Y., Chen W., Ciou W., and Tsai C.. 2017. A novel device for non-invasive assessment of extravasation during injection by NIRS technology. In Proceedings of the IEEE SENSORS. Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Incel Ozlem Durmaz and Bursa Sevda Ozge. 2023. On-device deep learning for mobile and wearable sensing applications: A review. IEEE Sensors J. 23, 6 (2023), 55015512. Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Ern S. H., Huong A., Mahmud W. M. Hafizah Wan, and Ngu X.. 2020. Portable and wireless imaging of dorsal hand vein. Indones. J. Electr. Eng. Comput. Sci. 19 (2020), 693700. Issue 2. Google ScholarGoogle ScholarCross RefCross Ref
  50. [50] Farag O., Mohamed M., Ghany M. Abd El, and Hofmann K.. 2018. Integrated sensors for early breast cancer diagnostics. In Proceedings of the IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS’18). Google ScholarGoogle ScholarCross RefCross Ref
  51. [51] Fernandez G. R., Matias J. L., Ferrero F., Valledor M., Campo J. Carlos, Royo L., Soldado A., and Forcada S.. 2019. Portable IoT NIR spectrometer for detecting undesirable substances in forages of dairy farms. In Proceedings of the International Conference on Sensing and Instrumentation in IoT Era (ISSI’19). Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Fletcher R. S., Showler A. T., and Funk P. A.. 2014. Employing broadband spectra and cluster analysis to assess thermal defoliation of cotton. Comput. Electr. Agric. 105 (2014), 103110. Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Foster Erin D. and Deardorff Ariel. 2017. Open science framework (OSF). J. Med. Library Assoc. 105, 2 (2017), 203. Google ScholarGoogle ScholarCross RefCross Ref
  54. [54] Fouad M. M., Mahmoud D. Y., and Ghany M. A. Abd El. 2018. Joint NIR-BIS based non-invasive glucose monitoring system. In Proceedings of the 30th International Conference on Microelectronics (ICM’18). Google ScholarGoogle ScholarCross RefCross Ref
  55. [55] Fu Y. and Liu J.. 2015. System design for wearable blood oxygen saturation and pulse measurement device. Procedia Manufact. 3 (2015), 11871194. Google ScholarGoogle ScholarCross RefCross Ref
  56. [56] Fuentes S., Viejo C. G., Hall C., Tang Y., and Tongson E.. 2021. Berry cell vitality assessment and the effect on wine sensory traits based on chemical fingerprinting, canopy architecture and machine learning modelling. Sensors 21 (2021). Issue 21. Google ScholarGoogle ScholarCross RefCross Ref
  57. [57] Gao S., Mondal S., Zhu N., Liang R., Achilefu S., and Gruev V.. 2015. A compact NIR fluorescence imaging system with goggle display for intraoperative guidance. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’15). Google ScholarGoogle ScholarCross RefCross Ref
  58. [58] Garcia-Martin R. and Sanchez-Reillo R.. 2020. Vein Biometric Recognition on a Smartphone. IEEE Access 8 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  59. [59] Gelabert P., Pruett E., Perrella G., Subramanian S., and Lakshminarayanan A.. 2016. DLP NIRscan Nano: An ultra-mobile DLP-based near-infrared Bluetooth spectrometer. In Proceedings of the International Society for Optical Engineering (SPIE’16). Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Gergely M., Wolfsperger F., and Schneebeli M.. 2014. Simulation and Validation of the InfraSnow: An Instrument to Measure Snow Optically Equivalent Grain Size. IEEE Trans. Geosci. Remote Sens. 52, 7 (2014). Google ScholarGoogle ScholarCross RefCross Ref
  61. [61] Glass Ian S.. 1999. Handbook of Infrared Astronomy. Number 1. Cambridge University Press, Cambridge, UK.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] Gong H. and Han F.. 2021. Study on modeling method of chemical composition of tobacco for micro near infrared instrument. In Proceedings of the IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA’21). 6064. Google ScholarGoogle ScholarCross RefCross Ref
  63. [63] Gualtieri J. A. and Chettri S.. 2000. Support vector machines for classification of hyperspectral data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (IGARSS’00), Vol. 2. 813815. Google ScholarGoogle ScholarCross RefCross Ref
  64. [64] Guo W., Yao P., Sheng X., Liu H., and Zhu X.. 2014. A wireless wearable sEMG and NIRS acquisition system for an enhanced human-computer interface. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. 21922197. Issue January. Google ScholarGoogle ScholarCross RefCross Ref
  65. [65] Gurulian Iakovos, Akram Raja Naeem, Markantonakis Konstantinos, and Mayes Keith. 2017. Preventing relay attacks in mobile transactions using infrared light. In Proceedings of the Symposium on Applied Computing (SAC’17). ACM, New York, NY, 17241731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  66. [66] Ha U. and Yoo H.. 2016. A multimodal drowsiness monitoring ear-module system with closed-loop real-time alarm. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS’16). Google ScholarGoogle ScholarCross RefCross Ref
  67. [67] Habibullah M., Mohebian M.R., Soolanayakanahally R., Wahid K.A., and Dinh A.. 2020. A cost-effective and portable optical sensor system to estimate leaf nitrogen and water contents in crops. Sensors (Switzerland) 20 (2020). Issue 5. Google ScholarGoogle ScholarCross RefCross Ref
  68. [68] Hamilton Antonia, Pinti Paola, Paoletti Davide, and Ward Jamie A.. 2018. Seeing into the brain of an actor with mocap and FNIRS. In Proceedings of the ACM International Symposium on Wearable Computers (ISWC’18). ACM, 216217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. [69] Hickman D. L.. 2019. The development of a multi-band handheld fusion camera. In Proceedings of SPIE - The International Society for Optical Engineering 11159. Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Ho Cyrus S. H., Lim Lucas J. H., Lim A. Q., Chan Nicole H. C., Tan R. S., Lee S. H., and Ho Roger C. M.. 2020. Diagnostic and predictive applications of functional near-infrared spectroscopy for major depressive disorder: A systematic review. Front. Psych. 11 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  71. [71] Hochradel K., Häcker T., Hohler T., Becher A., Wildermann S., and Sutor A.. 2019. Three-dimensional localization of bats: Visual and acoustical. IEEE Sensors J. 19, 14 (2019). Google ScholarGoogle ScholarCross RefCross Ref
  72. [72] Hofbauer H., Jalilian E., Sequeira A. F., Ferryman J., and Uhl A.. 2018. Mobile NIR iris recognition: Identifying problems and solutions. In Proceedings of the IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS’18). Google ScholarGoogle ScholarDigital LibraryDigital Library
  73. [73] Hong Guosong, Antaris Alexander L., and Dai Hongjie. 2017. Near-infrared fluorophores for biomedical imaging. Nature Biomed. Eng. 1, 1 (2017), 0010. Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Hong Keum-Shik and Yaqub M. Atif. 2019. Application of functional near-infrared spectroscopy in the healthcare industry: A review. J. Innovat. Optic. Health Sci. 12, 06 (2019), 1930012. Google ScholarGoogle ScholarCross RefCross Ref
  75. [75] Hu Haiyan, Zhang Qian, and Chen Yanjiao. 2022. NIRSCam: A mobile near-infrared sensing system for food calorie estimation. IEEE Internet Things J. 9, 19 (Oct.2022), 1893418945. Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Hussain I., Bora A. J., Sarma D., Ahamad K. U., and Nath P.. 2018. Design of a smartphone platform compact optical system operational both in visible and near infrared spectral regime. IEEE Sensors J. 18, 12 (2018). Google ScholarGoogle ScholarCross RefCross Ref
  77. [77] Ismaeel A. G. and Kamal M. Q.. 2017. Worldwide auto-mobi: Arduino IoT home automation system for IR devices. In Proceedings of the International Conference on Current Research in Computer Science and Information Technology (ICCIT’17), 5257. Google ScholarGoogle ScholarCross RefCross Ref
  78. [78] Fawaz Hassan Ismail, Forestier Germain, Weber Jonathan, Idoumghar Lhassane, and Muller Pierre-Alain. 2019. Deep learning for time-series classification: A review. Data Min. Knowl. Discov. 33, 4 (2019), 917963. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. [79] Jahagirdar S. and Sharma V.. 2019. Design and algorithms of the device to predict blood glucose level based on saliva sample using machine learning. In Proceedings of the 2nd International Conference on Smart Systems and Inventive Technology (ICSSIT’19), 429434. Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Javid B., Faranak F.-G., and Zakeri F.S.. 2018. Noninvasive optical diagnostic techniques for mobile blood glucose and bilirubin monitoring. J. Med. Signals Sensors 8 (2018), 125139. Issue 3. Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Javier R. I. R., Baloloy A. O., Linsangan N. B., and Villamor I. V.. 2020. Portable non-invasive glucometer using near-infrared sensor and Raspberry Pi. In Proceedings of the 4th International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM’20). 3539. Google ScholarGoogle ScholarCross RefCross Ref
  82. [82] Jiang Weiwei, Marini Gabriele, Berkel Niels van, Sarsenbayeva Zhanna, Tan Zheyu, Luo Chu, He Xin, Dingler Tilman, Goncalves Jorge, Kawahara Yoshihiro, and Kostakos Vassilis. 2019. Probing sucrose contents in everyday drinks using miniaturized near-infrared spectroscopy scanners. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4, Article 136 (Dec.2019), 25 pages. Issue 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  83. [83] Jiang Weiwei, Sarsenbayeva Zhanna, Berkel Niels van, Wang Chaofan, Yu Difeng, Wei Jing, Goncalves Jorge, and Kostakos Vassilis. 2021. User trust in assisted decision-making using miniaturized near-infrared spectroscopy. In Proceedings of the CHI Conference on Human Factors in Computing Systems (CHI’21). ACM, Article 153, 16 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. [84] Jiang Weiwei, Wang Chaofan, Sarsenbayeva Zhanna, Irlitti Andrew, Wei Jing, Knibbe Jarrod, Dingler Tilman, Goncalves Jorge, and Kostakos Vassilis. 2023. InfoPrint: Embedding interactive information in 3d prints using low-cost readily-available printers and materials. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 3, Article 102 (Sep.2023), 29 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. [85] Jiang Weiwei, Yu Difeng, Wang Chaofan, Sarsenbayeva Zhanna, Berkel Niels van, Goncalves Jorge, and Kostakos Vassilis. 2022. Near-infrared imaging for information embedding and extraction with layered structures. ACM Trans. Graph. 42, 1, Article 4 (Aug.2022), 26 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. [86] Johan F., MatJafri M. Z., Lim H. S., and Sim C. K.. 2013. Preliminary study: Spectral reflectance properties of microalgae in freshwater. In Proceedings of the International Conference on Space Science and Communication (IconSpace’13). 337340. Google ScholarGoogle ScholarCross RefCross Ref
  87. [87] Joo S. Y., Cho Y. S., Lee K. J., Lee S. Y., and Seo C. H.. 2021. Frontal lobe oxyhemoglobin levels in patients with lower extremity burns assessed using a functional near-Infrared spectroscopy device during usual walking: A pilot study. Comput. Methods Biomech. Biomed. Eng. 24 (2021), 115121. Issue 2. Google ScholarGoogle ScholarCross RefCross Ref
  88. [88] Joshi S. C., Lather J. S., and Dwivedi Y.. 2019. Photo therapy based designed device for hyper-pigmentation. In Proceedings of the International Conference on Trends in Electronics and Informatics (ICOEI’19). 843845. Google ScholarGoogle ScholarCross RefCross Ref
  89. [89] Kanatschnig T., Wood G., and Kober S. E.. 2021. The Potential of Functional Near-infrared Spectroscopy (fNIRS) for Motion-Intensive Game Paradigms. Vol. 13134 LNCS. 91–100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. [90] Karmakar Subashis, Kamilya Supreeti, Dey Prasenjit, Guhathakurta Parag K., Dalui Mamata, Bera Tushar Kanti, Halder Suman, Koley Chiranjib, Pal Tandra, and Basu Anupam. 2023. Real-time detection of cognitive load using fNIRS: A deep learning approach. Biomed. Signal Process. Control 80 (2023), 104227. Google ScholarGoogle ScholarCross RefCross Ref
  91. [91] Kazuki Y. and Tsunashima H.. 2014. Development of portable brain-computer interface using NIRS. In Proceedings of the UKACC International Conference on Control (CONTROL’14). Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] Khumaidi Ali, Purwanto Yohanes Aris, Sukoco Heru, and Wijaya Sony Hartono. 2022. Using fuzzy logic to increase accuracy in mango maturity index classification: Approach for developing a portable near-infrared spectroscopy device. Sensors 22, 24 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  93. [93] Klakegg Simon, Goncalves Jorge, Luo Chu, Visuri Aku, Popov Alexey, Berkel Niels van, Sarsenbayeva Zhanna, Kostakos Vassilis, Hosio Simo, Savage Scott, Bykov Alexander, Meglinski Igor, and Ferreira Denzil. 2018. Assisted medication management in elderly care using miniaturised near-infrared spectroscopy. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 2, 2, Article 69 (2018), 24 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. [94] Klakegg Simon, Goncalves Jorge, Berkel Niels van, Luo Chu, Hosio Simo, and Kostakos Vassilis. 2017. Towards commoditised near infrared spectroscopy. In Proceedings of the Conference on Designing Interactive Systems (DIS’17). 515527. Google ScholarGoogle ScholarDigital LibraryDigital Library
  95. [95] Klakegg Simon, Luo Chu, Goncalves Jorge, Hosio Simo, and Kostakos Vassilis. 2016. Instrumenting smartphones with portable NIRS. In Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (UbiComp’16). 618623. Google ScholarGoogle ScholarDigital LibraryDigital Library
  96. [96] Kosaka Nobuyuki, Ogawa Mikako, Choyke Peter L., and Kobayashi Hisataka. 2009. Clinical implications of near-infrared fluorescence imaging in cancer. Future Oncol 5, 9 (Nov.2009), 15011511. Google ScholarGoogle ScholarCross RefCross Ref
  97. [97] Laha S., Kaya S., Dhinagar N., Kelestemur Y., and Puri V.. 2018. A compact continuous non-invasive glucose monitoring system with phase-sensitive front end. In Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS’18). Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] Large J., Kemsley E. K., Wellner N., Goodall I., and Bagnall A.. 2018. Detecting Forged Alcohol Non-invasively through Vibrational Spectroscopy and Machine Learning. Vol. 10937 LNAI. 298–309 pages. Google ScholarGoogle ScholarCross RefCross Ref
  99. [99] Lee M., Chen X.-Y., and Lee H.-C.. 2019. Spectral preprocessing for hyperspectral remote sensing of heavy metals in water. Int. Arch. Photogram., Remote Sensing Spatial Info. Sci. 42, 10, 18691873. Issue 2/W13. Google ScholarGoogle ScholarCross RefCross Ref
  100. [100] Lee S. and Lee H.. 2019. Design of portable functional near-infrared spectroscopy-based brain monitoring system. In Proceedings of the International Conference on Electronics, Information, and Communication (ICEIC’19). Google ScholarGoogle ScholarCross RefCross Ref
  101. [101] Lee S., Noh T. G., Choi J. H., Han J., Ha J. Y., Lee J. Y., and Park Y.. 2017. NIR spectroscopic sensing for point-of-need freshness assessment of meat, fish, vegetables and fruits. In Proceedings of the International Society for Optical Engineering (SPIE’17). 32913306. Google ScholarGoogle ScholarCross RefCross Ref
  102. [102] Leong Y. S., Ker P. Jern, Hasnul M. H., Khamis M. A., Hannan M. A., Jamaludin M. Z., and Looe H. M.. 2020. Portable device for transformer oil inhibitor content analysis using near-infrared spectroscopy wavelength. In Proceedings of the IEEE Industry Applications Society Annual Meeting. Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Li D., Guo D., Han W., Chen H., Cao C., and Wang X. S.. 2017. Camera-recognizable and human-invisible labelling for privacy protection. In Proceedings of the 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN’16), 365369. Google ScholarGoogle ScholarCross RefCross Ref
  104. [104] Li Shengfa and Li Xiubin. 2017. Global understanding of farmland abandonment: A review and prospects. J. Geograph. Sci. 27, 9 (2017), 11231150. Google ScholarGoogle ScholarCross RefCross Ref
  105. [105] Li Stan Z., Yi Dong, Lei Zhen, and Liao Shengcai. 2013. The CASIA NIR-VIS 2.0 face database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 348353. Google ScholarGoogle ScholarDigital LibraryDigital Library
  106. [106] Li Tianxing and Zhou Xia. 2018. Battery-free eye tracker on glasses. In Proceedings of the 10th on Wireless of the Students, by the Students, and for the Students Workshop (S3’18). ACM, New York, NY, 2729. Google ScholarGoogle ScholarDigital LibraryDigital Library
  107. [107] Li Yunfan, Gong Yukai, Zhuang Jyun-Rong, Yang Junyan, Osawa Keisuke, Nakagawa Kei, Lee Hee-Hyol, Yuge Louis, and Tanaka Eiichiro. 2022. Development of automatic controlled walking assistive device based on fatigue and emotion detection. J. Robot. Mechatron. 34, 6 (2022), 13831397. Google ScholarGoogle ScholarCross RefCross Ref
  108. [108] Liang Z.. 2021. What does sleeping brain tell about stress? A pilot functional near-infrared spectroscopy study into stress-related cortical hemodynamic features during sleep. Front. Comput. Sci. 3 (2021). Google ScholarGoogle ScholarCross RefCross Ref
  109. [109] Liu Haipeng, Wang Yuheng, Zhou Anfu, He Hanyue, Wang Wei, Wang Kunpeng, Pan Peilin, Lu Yixuan, Liu Liang, and Ma Huadong. 2020. Real-time arm gesture recognition in smart home scenarios via millimeter wave sensing. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 4, 4, Article 140 (Dec.2020), 28 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  110. [110] Lo Sin Kit, Lu Qinghua, Wang Chen, Paik Hye-Young, and Zhu Liming. 2021. A systematic literature review on federated machine learning: From a software engineering perspective. ACM Comput. Surv. 54, 5, Article 95 (May2021), 39 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  111. [111] Long N. M. Hoang, Kim J.-J., and Chung W.-Y.. 2021. A Prototype Wristwatch Device for Monitoring Vital Signs Using Multi-wavelength Photoplethysmography Sensors. Vol. 12616 LNCS. 312–318 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  112. [112] Loper Edward and Bird Steven. 2002. Nltk: The natural language toolkit. Retrieved from https://arxiv.org/abs/cs/0205028Google ScholarGoogle Scholar
  113. [113] Lutz Wolfgang, Sanderson Warren, and Scherbov Sergei. 2008. The coming acceleration of global population ageing. Nature 451, 7179 (2008), 716719. Google ScholarGoogle ScholarCross RefCross Ref
  114. [114] Ma Yongsen, Zhou Gang, and Wang Shuangquan. 2019. WiFi sensing with channel state information: A survey. ACM Comput. Surv. 52, 3, Article 46 (June2019), 36 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  115. [115] Mah Aaron James, Nguyen Thien, Zadeh Leili Ghazi, Shadgan Atrina, Khaksari Kosar, Nourizadeh Mehdi, Zaidi Ali, Park Soongho, Gandjbakhche Amir H., and Shadgan Babak. 2022. Optical monitoring of breathing patterns and tissue oxygenation: A potential application in COVID-19 screening and monitoring. Sensors 22, 19 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  116. [116] Manurung B. E., Munggaran H. R., Ramadhan G. F., and Koesoema A. P.. 2019. Non-invasive blood glucose monitoring using near-infrared spectroscopy based on internet of things using machine learning. In Proceedings of the IEEE R10 Humanitarian Technology Conference (R10-HTC’19). Google ScholarGoogle ScholarCross RefCross Ref
  117. [117] Matsumoto T., Murayama Y., and Sakatani K.. 2017. Bootstrap analyses of anxiety index measuring the prefrontal cortex of subjects at rest with two-channel portable NIRS device. Int. J. Hum.-Comput. Int. 33 (2017), 399409. Issue 5. Google ScholarGoogle ScholarCross RefCross Ref
  118. [118] Mayberry Addison, Tun Yamin, Hu Pan, Smith-Freedman Duncan, Ganesan Deepak, Marlin Benjamin M., and Salthouse Christopher. 2015. CIDER: Enabling robustness-power tradeoffs on a computational eyeglass. In Proceedings of the 21st Annual International Conference on Mobile Computing and Networking (MobiCom’15). ACM, New York, NY, 400412. Google ScholarGoogle ScholarDigital LibraryDigital Library
  119. [119] Melendreras Candela, Forcada Sergio, Fernández-sánchez María Luisa, Fernández-Colomer Belén, Costa-fernández José M., López Alberto, Ferrero Francisco, and Soldado Ana. 2022. Near-infrared sensors for onsite and noninvasive quantification of macronutrients in breast milk. Sensors 22, 4 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  120. [120] Min Weiqing, Jiang Shuqiang, Liu Linhu, Rui Yong, and Jain Ramesh. 2019. A survey on food computing. ACM Comput. Surv. 52, 5, Article 92 (Sep.2019), 36 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  121. [121] Mohri Mehryar, Rostamizadeh Afshin, and Talwalkar Ameet. 2018. Foundations of Machine Learning. MIT Press, Cambridge, MA.Google ScholarGoogle ScholarDigital LibraryDigital Library
  122. [122] Molavi B., Shadgan B., Macnab A. J., and Dumont G. A.. 2014. Noninvasive optical monitoring of bladder filling to capacity using a wireless near infrared spectroscopy device. IEEE Trans. Biomed. Circ. Syst. 8, 3 (2014). Google ScholarGoogle ScholarCross RefCross Ref
  123. [123] Montanari Alessandro, Tian Zhao, Francu Elena, Lucas Benjamin, Jones Brian, Zhou Xia, and Mascolo Cecilia. 2018. Measuring interaction proxemics with wearable light tags. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 1, Article 25 (Mar.2018), 30 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  124. [124] Moon E. J., Kim Y., Xu Y., Na Y., Giaccia A. J., and Lee J. H.. 2020. Evaluation of salmon, tuna, and beef freshness using a portable spectrometer. Sensors (Switzerland) 20 (2020), 112. Issue 15. Google ScholarGoogle ScholarCross RefCross Ref
  125. [125] Moreira M., França J. A. de, Filho D. de Oliveira Toginho, Beloti V., Yamada A. K., França M. B. de M., and Ribeiro L. de Souza. 2016. A low-cost NIR digital photometer based on ingaas sensors for the detection of milk adulterations with water. IEEE Sensors J. 16, 10 (2016). Google ScholarGoogle ScholarCross RefCross Ref
  126. [126] Mulvey B. W.. 2020. Determination of fat content in foods using a near-infrared spectroscopy sensor. In Proceedings of the IEEE SENSORS. Google ScholarGoogle ScholarCross RefCross Ref
  127. [127] Nawi N. M., Chen G., and Jensen T.. 2013. Application of visible and shortwave near infrared spectrometer to predict sugarcane quality from different sample forms. In Proceedings of the International Society for Optical Engineering. Google ScholarGoogle ScholarCross RefCross Ref
  128. [128] Nishikawa T., Watanuki K., Kaede K., Muramatsu K., and Mashiko N.. 2020. Effects of subjective visual fatigue on brain function during luminescent sentence reading task. In Proceedings of the IEEE/SICE International Symposium on System Integration (SII’20), 390394. Google ScholarGoogle ScholarCross RefCross Ref
  129. [129] Nozawa T. and Miyake Y.. 2020. Capturing individual differences in prefrontal activity with wearable fNIRS for daily use. In Proceedings of the International Conference on Human System Interaction (HSI’20). 249254. Google ScholarGoogle ScholarCross RefCross Ref
  130. [130] Ogawa T., Hirayama J.-I., Gupta P., Moriya H., Yamaguchi S., Ishikawa A., Inoue Y., Kawanabe M., and Ishii S.. 2015. Brain-machine interfaces for assistive smart homes: A feasibility study with wearable near-infrared spectroscopy. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’15). 11071110. Google ScholarGoogle ScholarCross RefCross Ref
  131. [131] Oh E., Kim Y., Ning B., Lee S. Y., Kim W. W., and Cha J.. 2021. Development of a non-invasive, dual-sensor handheld imager for intraoperative preservation of parathyroid glands. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS’21). 74087411. Google ScholarGoogle ScholarCross RefCross Ref
  132. [132] O’Mahony Niall, Campbell Sean, Carvalho Anderson, Harapanahalli Suman, Hernandez Gustavo Velasco, Krpalkova Lenka, Riordan Daniel, and Walsh Joseph. 2020. Deep learning vs. traditional computer vision. In Advances in Computer Vision, Arai Kohei and Kapoor Supriya (Eds.). Springer International Publishing, Cham, 128144.Google ScholarGoogle ScholarCross RefCross Ref
  133. [133] Ouankhamchan P. and Fujinami T.. 2019. Effects of Casual Computer Game on Cognitive Performance Through Hemodynamic Signals. Vol. 11717 LNAI. 478–492 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  134. [134] Page Matthew J., McKenzie Joanne E., Bossuyt Patrick M., Boutron Isabelle, Hoffmann Tammy C., Mulrow Cynthia D., Shamseer Larissa, Tetzlaff Jennifer M., Akl Elie A., Brennan Sue E., Chou Roger, Glanville Julie, Grimshaw Jeremy M., Hróbjartsson Asbjørn, Lalu Manoj M., Li Tianjing, Loder Elizabeth W., Mayo-Wilson Evan, McDonald Steve, McGuinness Luke A., Stewart Lesley A., Thomas James, Tricco Andrea C., Welch Vivian A., Whiting Penny, and Moher David. 2021. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. System. Rev. 10, 1 (2021), 89. Google ScholarGoogle ScholarCross RefCross Ref
  135. [135] Pan Shijia, Chen An, and Zhang Pei. 2013. Securitas: User identification through RGB-NIR camera pair on mobile devices. In Proceedings of the 3rd ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM’13). ACM, New York, NY, 99104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  136. [136] Pantazi X. E., Tamouridou A. A., Alexandridis T. K., Lagopodi A. L., Kontouris G., and Moshou D.. 2017. Detection of Silybum marianum infection with Microbotryum silybum using VNIR field spectroscopy. Comput. Electron. Agric. 137 (2017), 130137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  137. [137] Patrício Diego Inácio and Rieder Rafael. 2018. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153 (2018), 6981. Google ScholarGoogle ScholarCross RefCross Ref
  138. [138] Pejovic Veljko and Musolesi Mirco. 2015. Anticipatory mobile computing: A survey of the state of the art and research challenges. ACM Comput. Surv. 47, 3, Article 47 (Apr.2015), 29 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  139. [139] Puttipipatkajorn Amorndej and Puttipipatkajorn Amornrit. 2022. Rapid quality evaluation of Camellia oleifera seed kernel using a developed portable NIR with optimal wavelength selection. IEEE Access 10 (2022), 83178327. Google ScholarGoogle ScholarCross RefCross Ref
  140. [140] Rahman Tauhidur, Adams Alexander T., Schein Perry, Jain Aadhar, Erickson David, and Choudhury Tanzeem. 2016. Nutrilyzer: A mobile system for characterizing liquid food with photoacoustic effect. In Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM (SenSys’16). ACM, New York, NY, 123136. Google ScholarGoogle ScholarDigital LibraryDigital Library
  141. [141] Rajagoplan U. M.. 2018. Green tea could improve the performance of cognitive tasks: A pilot study with wearable brain imaging device. In Proceedings of the International Conference on Advanced Mechatronic Systems (ICAMechS’18) (2018). Google ScholarGoogle ScholarCross RefCross Ref
  142. [142] Rego G., Ferrero F., Valledor M., Campo J. C., Forcada S., Royo L. J., and Soldado A.. 2020. A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage. Comput. Electr. Agric. 175 (2020). Google ScholarGoogle ScholarCross RefCross Ref
  143. [143] Reich Gabriele. 2005. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 57, 8 (2005), 11091143. Non-Invasive Spectroscopic and Imaging Techniques in Drug Delivery.Google ScholarGoogle ScholarCross RefCross Ref
  144. [144] Roslin N. A., Che’ya N. N., Sulaiman N., Alahyadi L. A. N., and Ismail M. R.. 2021. Mobile application development for spectral signature of weed species in rice farming. Pertanika J. Sci. Technol. 29 (2021), 22412259. Issue 4. Google ScholarGoogle ScholarCross RefCross Ref
  145. [145] Saikia M. J., Cay G., Gyllinsky J. V., and Mankodiya K.. 2018. A configurable wireless optical brain monitor based on internet-of-things services. In Proceedings of the 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques. 4248. Google ScholarGoogle ScholarCross RefCross Ref
  146. [146] Saikia M. J. and Mankodiya K.. 2018. A wireless fNIRS patch with short-channel regression to improve detection of hemodynamic response of brain. In Proceedings of the 3rd International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT’18). 9096. Google ScholarGoogle ScholarCross RefCross Ref
  147. [147] Saluja R. and Garg J. K.. 2017. Spectral discrimination of macrophyte species during different seasons in a tropical wetland using in situ hyperspectral remote sensing. In Proceedings of the International Society for Optical Engineering (SPIE’17). Google ScholarGoogle ScholarCross RefCross Ref
  148. [148] Samiappan S., Bheemanahalli R., Zhou M., Brooks J., and Wubben M.. 2021. Early detection of root-knot nematode (meloidogyne incognita) infestation in cotton using hyperspectral data. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS’21). 58495852. Google ScholarGoogle ScholarCross RefCross Ref
  149. [149] Saxena H., Ward K. R., Krishnan C., and Epureanu B. I.. 2020. Effect of multi-frequency whole-body vibration on muscle activation, metabolic cost and regional tissue oxygenation. IEEE Access 8 (2020), 140445140455. Google ScholarGoogle ScholarCross RefCross Ref
  150. [150] Shoji Yuto, Madokoro Hirokazu, Nix Stephanie, Saruta Kazuki, Saito Takashi K., and Sato Kazuhito. 2022. Prediction of time-series brain activity changes before and after near-miss events in snow traffic conditions. In Proceedings of the 22nd International Conference on Control, Automation and Systems (ICCAS), Vol. 2022-November. 15151520. Google ScholarGoogle ScholarCross RefCross Ref
  151. [151] Si J., Zhang X., Li M., Yu J., Zhang Z., He Q., Chen S., Zhu L., and Jiang T.. 2021. Wearable wireless real-time cerebral oximeter for measuring regional cerebral oxygen saturation. Sci. China Info. Sci. 64, 1 (2021). Issue 1. Google ScholarGoogle ScholarCross RefCross Ref
  152. [152] Siddiquee M. R., Xue T., Marquez J. S., Atri R., Ramon R., Mayrand R. P., Leung C., and Bai O.. 2019. Sensor fusion in human cyber sensor system for motion artifact removal from NIRS signal. In Proceedings of the International Conference on Human System Interaction (HSI’19). 192196. Google ScholarGoogle ScholarCross RefCross Ref
  153. [153] Sohn Soo-In, Pandian Subramani, Zaukuu John-Lewis Zinia, Oh Young-Ju, Park Soo-Yun, Na Chae-Sun, Shin Eun-Kyoung, Kang Hyeon-Jung, Ryu Tae-Hun, Cho Woo-Suk, and Cho Youn-Sung. 2022. Discrimination of transgenic canola (Brassica napus L.) and their hybrids with B. rapa using Vis-NIR spectroscopy and machine learning methods. Int. J. Mol. Sci. 23, 1 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  154. [154] Sun H., Peng Y., Li P., and Wang W.. 2017. A portable device for detecting fruit quality by diffuse reflectance Vis/NIR spectroscopy. In Proceedings of the International Society for Optical Engineering (SPIE’17). Google ScholarGoogle ScholarCross RefCross Ref
  155. [155] Suresh H., Behera A. R., Selvaraja S. K., and Pratap R.. 2020. Evaluation of a miniaturized NIR spectrometer for estimating total curcuminoids in powdered turmeric samples. In Proceedings of the 5th IEEE International Conference on Emerging Electronics (ICEE’20), 21312144. Google ScholarGoogle ScholarCross RefCross Ref
  156. [156] Suzuki Ryohei, Madokoro Hirokazu, Nix Stephanie, Saruta Kazuki, Saito Takashi K., and Sato Kazuhito. 2022. Readiness estimation for a take-over request in automated driving on an expressway. In Proceedings of the 22nd International Conference on Control, Automation and Systems (ICCAS’22). 15211526. Google ScholarGoogle ScholarCross RefCross Ref
  157. [157] Tanino K., Miura H., Matsuda N., and Taki H.. 2015. The analysis of the brain state measuring by NIRS-based BMI in answering yes-no questions. Procedia Comput. Sci. 60, 12331239. Google ScholarGoogle ScholarCross RefCross Ref
  158. [158] Titubante Mattia, Marconi Claudia, Citiulo Lucia, Conte Adriano Mosca, Mazzuca Claudia, Petrucci Francesco, Pulci Olivia, Tumiati Manuel, Wang Shan, Micheli Laura, and Missori Mauro. 2022. Analysis and diagnosis of the state of conservation and restoration of paper-based artifacts: A non-invasive approach. J. Cult. Herit. 55 (2022), 290299. Google ScholarGoogle ScholarCross RefCross Ref
  159. [159] Tome Pedro and Marcel Sébastien. 2015. On the vulnerability of palm vein recognition to spoofing attacks. In Proceedings of the International Conference on Biometrics (ICB’15). 319325. Google ScholarGoogle ScholarCross RefCross Ref
  160. [160] Uchitel Julie, Vidal-Rosas Ernesto E., Cooper Robert J., and Zhao Hubin. 2021. Wearable, integrated EEGfNIRS technologies: A review. Sensors 21, 18 (2021). Google ScholarGoogle ScholarCross RefCross Ref
  161. [161] Udara S. S. W. I., Alwis A. K. De, Silva K. M. W. K., Ananda U. V. D. M. A., and Kahandawaarachchi K. A. D. C. P.. 2019. DiabiTech- non-invasive blood glucose monitoring system. In Proceedings of the International Conference on Advancements in Computing (ICAC’19), 145150. Google ScholarGoogle ScholarCross RefCross Ref
  162. [162] Varandas Rui, Lima Rodrigo, Badia Sergi Bermúdez I., Silva Hugo, and Gamboa Hugo. 2022. Automatic cognitive fatigue detection using wearable fnirs and machine learning. Sensors 22, 11 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  163. [163] Vicente-Saez Ruben and Martinez-Fuentes Clara. 2018. Open science now: A systematic literature review for an integrated definition. J. Bus. Res. 88 (2018), 428436. Google ScholarGoogle ScholarCross RefCross Ref
  164. [164] Vincini M., Amaducci S., and Frazzi E.. 2014. Empirical estimation of leaf chlorophyll density in winter wheat canopies using sentinel-2 spectral resolution. IEEE Trans. Geosci. Remote Sens. 52, 6 (2014). Google ScholarGoogle ScholarCross RefCross Ref
  165. [165] Lühmann A. von, Wabnitz H., Sander T., and Müller K.. 2017. M3BA: A mobile, modular, multimodal biosignal acquisition architecture for miniaturized EEG-NIRS-based hybrid BCI and monitoring. IEEE Trans. Biomed. Eng. 64, 6 (2017). Google ScholarGoogle ScholarCross RefCross Ref
  166. [166] Walia Pushpinder, Fu Yaoyu, Norfleet Jack, Schwaitzberg Steven D., Intes Xavier, De Suvranu, Cavuoto Lora, and Dutta Anirban. 2022. Error related fNIRS-EEG microstate analysis during a complex surgical motor task. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’22). 941944. Google ScholarGoogle ScholarCross RefCross Ref
  167. [167] Wang J., Zhang G., and Shi J.. 2015. Pupil and glint detection using wearable camera sensor and near-infrared LED array. Sensors (Switzerland) 15, 8 (2015), 3012630141. Issue 12. Google ScholarGoogle ScholarCross RefCross Ref
  168. [168] Wang Siqi, Pathania Anuj, and Mitra Tulika. 2020. Neural network inference on mobile SoCs. IEEE Design Test 37, 5 (2020), 5057. Google ScholarGoogle ScholarCross RefCross Ref
  169. [169] Wang T., Chen J., Fan Y., Qiu Z., and He Y.. 2018. SeeFruits: Design and evaluation of a cloud-based ultra-portable NIRS system for sweet cherry quality detection. Comput. Electron. Agric. 152, 5 (2018), 302313. Google ScholarGoogle ScholarDigital LibraryDigital Library
  170. [170] Wang Y.-J., Jin S.-S., Li M.-H., Liu Y., Li L.-Q., Ning J.-M., and Zhang Z.-Z.. 2020. Onsite nutritional diagnosis of tea plants using micro near-infrared spectrometer coupled with chemometrics. Comput. Electron. Agric. 175, 11 (2020), 35013516. Google ScholarGoogle ScholarCross RefCross Ref
  171. [171] Wang Z., Li W., Li G., and Zhou Z.. 2019. Research of portable tea polyphenols detector. In Proceedings of the 4th International Conference on Electromechanical Control Technology and Transportation (ICECTT’19). Google ScholarGoogle ScholarCross RefCross Ref
  172. [172] Watanabe T., Mizuno T., Shikayama T., and Miwa M.. 2012. Development of a wireless near-infrared tissue oxygen monitor system with high sampling rate. In Proceedings of the Conference on Digital Holography and Three-dimensional Imaging (DH’12). Google ScholarGoogle ScholarCross RefCross Ref
  173. [173] Willard C., Gibson A., and Wade N.. 2019. High-resolution visible and infrared imaging for large paintings: A case study on Israel in Egypt by Poynter. In Proceedings of the International Society for Optical Engineering (SPIE’19). Google ScholarGoogle ScholarCross RefCross Ref
  174. [174] Wu X. and Jin W.. 2017. Design of a compact low-power human-computer interaction equipment for hand motion. In Proceedings of the International Society for Optical Engineering (SPIE’17). 1. Google ScholarGoogle ScholarCross RefCross Ref
  175. [175] Wu Z., Du M., Sui C., Xu B., Peng Y., Shi X., and Qiao Y.. 2012. Development and Validation of a Portable AOTF-NIR Measurement Method for the Determination of Baicalin in Yinhuang Oral Solution. In Proceedings of the International Conference on Biomedical Engineering and Biotechnology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  176. [176] Yabré Moussa, Sakira Abdoul Karim, Bandé Moumouni, Goumbri Bertrand W. F., Ouattara Sandrine M., Fofana Souleymane, and Somé Touridomon Issa. 2022. Detection of falsified antimalarial sulfadoxine-pyrimethamine and dihydroartemisinin-piperaquine drugs using a low-cost handheld near-infrared spectrometer. J. Anal. Methods Chem. 2022 (2022). Google ScholarGoogle ScholarCross RefCross Ref
  177. [177] Yamamura H., Baldauf H., and Kunze K.. 2021. HemodynamicVR-adapting the user’s field of view during virtual reality locomotion tasks to reduce cybersickness using wearable functional near-infrared spectroscopy. In Proceedings of the ACM International Conference Proceeding Series, 223227. Google ScholarGoogle ScholarDigital LibraryDigital Library
  178. [178] Yang B., Zhu Z., Gao M., Yan X., Zhu X., and Guo W.. 2020. A portable detector on main compositions of raw and homogenized milk. Comput. Electron. Agric. 177, 6 (2020), 409423. Google ScholarGoogle ScholarCross RefCross Ref
  179. [179] Yang Kang, Xing Tianzhang, Liu Yang, Li Zhenjiang, Gong Xiaoqing, Chen Xiaojiang, and Fang Dingyi. 2019. cDeepArch: A compact deep neural network architecture for mobile sensing. IEEE/ACM Trans. Netw. 27, 5 (2019), 20432055. Google ScholarGoogle ScholarDigital LibraryDigital Library
  180. [180] Yao P., Guo W., Sheng X., Zhang D., and Zhu X.. 2014. A portable multi-channel wireless NIRS device for muscle activity real-time monitoring. In Proceedings of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, 37193722. Google ScholarGoogle ScholarCross RefCross Ref
  181. [181] Yaqub M.A., Woo S.-W., and Hong K.-S.. 2020. Compact, portable, high-density functional near-infrared spectroscopy system for brain imaging. IEEE Access 8 (2020), 128224128238. Google ScholarGoogle ScholarCross RefCross Ref
  182. [182] You H., Kim H., Joo D.-K., Lee S.M., Kim J., and Choi S.. 2019. Classification of food powders with open set using portable VIS-NIR spectrometer. In Proceedings of the 1st International Conference on Artificial Intelligence in Information and Communication (ICAIIC’19), 423426. Google ScholarGoogle ScholarCross RefCross Ref
  183. [183] You H., Kim Y., Lee J.-H., and Choi S.. 2017. Classification of food powders using handheld NIR spectrometer. In Proceedings of the International Conference on Ubiquitous and Future Networks (ICUFN’17). 732734. Google ScholarGoogle ScholarCross RefCross Ref
  184. [184] You H., Kim Y., Lee J.-H., Jang B.-J., and Choi S.. 2017. Food powder classification using a portable visible-near-infrared spectrometer. J. Electromag. Eng. Sci. 17 (2017), 186190. Issue 4. Google ScholarGoogle ScholarCross RefCross Ref
  185. [185] Yu Y., Huang J., Zhu J., and Liang S.. 2021. An accurate noninvasive blood glucose measurement system using portable near-infrared spectrometer and transfer learning framework. IEEE Sensors J. 21, 3 (2021). Google ScholarGoogle ScholarCross RefCross Ref
  186. [186] Zhang L., Wang L., Wang J., Song Z., Rehman T.U., Bureetes T., Ma D., Chen Z., Neeno S., and Jin J.. 2019. Leaf scanner: A portable and low-cost multispectral corn leaf scanning device for precise phenotyping. Comput. Electron. Agric. 167, 1-4 (2019), 703722. Google ScholarGoogle ScholarDigital LibraryDigital Library
  187. [187] Zhang Shigeng, Li Yinggang, Liu Xuan, Guo Song, Wang Weiping, Wang Jianxin, Ding Bo, and Wu Di. 2020. Towards real-time cooperative deep inference over the cloud and edge end devices. Proc. ACM Interact. Mob. Wear. Ubiq. Technol. 4, 2, Article 69 (June2020), 24 pages. Google ScholarGoogle ScholarDigital LibraryDigital Library
  188. [188] Zhang Yu, Zhang Xiong, Sun Han, Zhong Xuefei, and Fan Zhaowen. 2018. A wearable wireless FNIRS system. In Proceedings of the 8th International Conference on Bioscience, Biochemistry and Bioinformatics (ICBBB’18). 124128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  189. [189] Zhao Fei, Tomita MacHiko R., and Dutta Anirban. 2022. Functional near-infrared spectroscopy of prefrontal cortex during memory encoding and recall in elderly with type 2 diabetes mellitus. In Proceedings of the 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC’22). 33233326. Google ScholarGoogle ScholarCross RefCross Ref
  190. [190] Zhou Lina, Pan Shimei, Wang Jianwu, and Vasilakos Athanasios V.. 2017. Machine learning on big data: Opportunities and challenges. Neurocomputing 237 (2017), 350361. Google ScholarGoogle ScholarDigital LibraryDigital Library
  191. [191] Zhou P., Zhang Y., Yang W., Li M., Liu Z., and Liu X.. 2019. Development and performance test of an in situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy. Comput. Electron. Agric. 160, 2 (2019), 5158. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Mobile Near-infrared Sensing—A Systematic Review on Devices, Data, Modeling, and Applications

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 56, Issue 8
          August 2024
          963 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3613627
          Issue’s Table of Contents

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 10 April 2024
          • Online AM: 16 March 2024
          • Accepted: 7 March 2024
          • Revised: 19 February 2024
          • Received: 6 November 2022
          Published in csur Volume 56, Issue 8

          Check for updates

          Qualifiers

          • survey
        • Article Metrics

          • Downloads (Last 12 months)242
          • Downloads (Last 6 weeks)157

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text