Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity

An Author Correction to this article was published on 18 April 2024

This article has been updated

Abstract

The discovery that externally driven nonlinear optical resonators can sustain ultrashort pulses (solitons) corresponding to coherent optical frequency combs has enabled landmark advances in applications from telecommunications to sensing. Most previous research has focused on resonators with purely cubic (Kerr-type) nonlinearity that are externally driven with a monochromatic continuous-wave laser—in such systems, the solitons manifest themselves as unique attractors whose carrier frequency coincides with that of the external driving field. Recent experiments have, however, shown that a qualitatively different type of temporal soliton can arise via parametric downconversion in resonators with simultaneous quadratic and cubic nonlinearity. In contrast to conventional solitons in pure-Kerr resonators, these parametrically driven solitons come in two different flavours with opposite phases, and they are spectrally centred at half of the frequency of the driving field. Here we theoretically predict and experimentally demonstrate that parametrically driven solitons can also arise in resonators with pure-Kerr nonlinearity under conditions of bichromatic driving. In this case, the solitons arise through four-wave-mixing-mediated phase-sensitive amplification, come with two distinct phases and have a carrier frequency in between the two external driving fields. Our experiments are performed in an integrated silicon nitride microcavity, and we observe frequency comb spectra in remarkable agreement with theoretical predictions. In addition to representing the discovery of a new type of temporal dissipative soliton, our results constitute an unequivocal realization of parametrically driven soliton frequency combs in a microcavity platform that is compatible with foundry-ready mass fabrication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of platforms and schematic illustration of parametrically driven cavity soliton (PDCS) generation in Kerr resonators.
Fig. 2: Illustrative simulations of PDCSs in dispersive Kerr resonators.
Fig. 3: Experimental observation of pure-Kerr temporal PDCSs in an on-chip microcavity.
Fig. 4: Observations of multi-soliton interference.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Change history

References

  1. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 4, 471–476 (2010).

    Article  ADS  Google Scholar 

  2. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  3. Wabnitz, S. Suppression of interactions in a phase-locked soliton optical memory. Opt. Lett. 18, 601–603 (1993).

    Article  ADS  Google Scholar 

  4. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photonics 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  5. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  6. Pasquazi, A. et al. Micro-combs: a novel generation of optical sources. Phys. Rep. 729, 1–81 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  7. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  8. Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun. 11, 2568 (2020).

    Article  ADS  Google Scholar 

  9. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  10. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    Article  ADS  Google Scholar 

  11. Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics 13, 25–30 (2019).

    Article  ADS  Google Scholar 

  12. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photonics 13, 31–35 (2019).

    Article  ADS  Google Scholar 

  13. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  14. Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 374 (2020).

    Article  ADS  Google Scholar 

  15. Kwon, D., Jeong, D., Jeon, I., Lee, H. & Kim, J. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs. Nat. Commun. 13, 381 (2022).

    Article  ADS  Google Scholar 

  16. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  ADS  Google Scholar 

  17. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  Google Scholar 

  18. Nielsen, A. U., Garbin, B., Coen, S., Murdoch, S. G. & Erkintalo, M. Coexistence and interactions between nonlinear states with different polarizations in a monochromatically driven passive Kerr resonator. Phys. Rev. Lett. 123, 013902 (2019).

    Article  ADS  Google Scholar 

  19. Hansson, T. & Wabnitz, S. Frequency comb generation beyond the Lugiato–Lefever equation: multi-stability and super cavity solitons. J. Opt. Soc. Am. B 32, 1259–1266 (2015).

    Article  ADS  Google Scholar 

  20. Xu, G. et al. Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator. Nat. Commun. 12, 4023 (2021).

    Article  ADS  Google Scholar 

  21. Lucas, E. et al. Spatial multiplexing of soliton microcombs. Nat. Photonics 12, 699–705 (2018).

    Article  ADS  Google Scholar 

  22. Okawachi, Y. et al. Quantum random number generator using a microresonator-based Kerr oscillator. Opt. Lett. 41, 4194–4197 (2016).

    Article  ADS  Google Scholar 

  23. Okawachi, Y. et al. Dynamic control of photon lifetime for quantum random number generation. Optica 8, 1458–1461 (2021).

    Article  ADS  Google Scholar 

  24. Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photonics 10, 415–419 (2016).

    Article  ADS  Google Scholar 

  25. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hardware solvers of combinatorial optimization problems. Nat. Rev. Phys. 4, 363–379 (2022).

    Article  Google Scholar 

  26. Englebert, N. et al. Parametrically driven Kerr cavity solitons. Nat. Photonics 15, 857–861 (2021).

    Article  ADS  Google Scholar 

  27. Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photonics 15, 21–27 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  28. Thomson, D. et al. Roadmap on silicon photonics. J. Opt. 18, 073003 (2016).

    Article  ADS  Google Scholar 

  29. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article  ADS  Google Scholar 

  30. Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2021).

    Article  ADS  Google Scholar 

  31. Nitiss, E., Hu, J., Stroganov, A. & Brès, C.-S. Optically reconfigurable quasi-phase-matching in silicon nitride microresonators. Nat. Photonics 16, 134–141 (2022).

    Article  ADS  Google Scholar 

  32. Mecozzi, A., Kath, W. L., Kumar, P. & Goedde, C. G. Long-term storage of a soliton bit stream by use of phase-sensitive amplification. Opt. Lett. 19, 2050–2052 (1994).

    Article  ADS  Google Scholar 

  33. Radic, S. & McKinstrie, C. J. Two-pump fiber parametric amplifiers. Opt. Fiber Technol. 9, 7–23 (2003).

    Article  ADS  Google Scholar 

  34. Okawachi, Y. et al. Dual-pumped degenerate Kerr oscillator in a silicon nitride microresonator. Opt. Lett. 40, 5267–5270 (2015).

    Article  ADS  Google Scholar 

  35. Andrekson, P. A. & Karlsson, M. Fiber-based phase-sensitive optical amplifiers and their applications. Adv. Opt. Photonics 12, 367–428 (2020).

    Article  ADS  Google Scholar 

  36. de Valcárcel, G. J. & Staliunas, K. Phase-bistable Kerr cavity solitons and patterns. Phys. Rev. A 87, 043802 (2013).

    Article  ADS  Google Scholar 

  37. Hansson, T. & Wabnitz, S. Bichromatically pumped microresonator frequency combs. Phys. Rev. A 90, 013811 (2014).

    Article  ADS  Google Scholar 

  38. Zhang, S., Silver, J. M., Bi, T. & Del’Haye, P. Spectral extension and synchronization of microcombs in a single microresonator. Nat. Commun. 11, 6384 (2020).

    Article  ADS  Google Scholar 

  39. Moille, G. et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun. 12, 7275 (2021).

    Article  ADS  Google Scholar 

  40. Qureshi, P. C. et al. Soliton linear-wave scattering in a Kerr microresonator. Commun. Phys. 5, 123 (2022).

    Article  Google Scholar 

  41. Taheri, H., Matsko, A. B., Maleki, L. & Sacha, K. All-optical dissipative discrete time crystals. Nat. Commun. 13, 848 (2022).

    Article  ADS  Google Scholar 

  42. Barashenkov, I. V., Bogdan, M. M. & Korobov, V. I. Stability diagram of the phase-locked solitons in the parametrically driven, damped nonlinear Schrödinger equation. Europhys. Lett. 15, 113 (1991).

    Article  ADS  Google Scholar 

  43. Coen, S. & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    Article  ADS  Google Scholar 

  44. Coen, S., Randle, H. G., Sylvestre, T. & Erkintalo, M. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett. 38, 37–39 (2013).

    Article  ADS  Google Scholar 

  45. Yu, S.-P. et al. Tuning Kerr-soliton frequency combs to atomic resonances. Phys. Rev. Appl. 11, 044017 (2019).

    Article  ADS  Google Scholar 

  46. Moille, G. et al. Broadband resonator–waveguide coupling for efficient extraction of octave-spanning microcombs. Opt. Lett. 44, 4737–4740 (2019).

    Article  ADS  Google Scholar 

  47. Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206–212 (2019).

    Article  ADS  Google Scholar 

  48. Zhou, H. et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl. 8, 50 (2019).

    Article  ADS  Google Scholar 

  49. Moille, G. et al. Two-dimensional nonlinear mixing between a dissipative Kerr soliton and continuous waves for a higher-dimension frequency comb. Preprint at https://arxiv.org/abs/2303.10026 (2023).

  50. Moille, G. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023).

  51. Leo, F., Gelens, L., Emplit, P., Haelterman, M. & Coen, S. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express 21, 9180–9191 (2013).

    Article  ADS  Google Scholar 

  52. Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017).

    Article  ADS  Google Scholar 

  53. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photonics 7, 657–663 (2013).

    Article  ADS  Google Scholar 

  54. Cole, D. C., Lamb, E. S., Del’Haye, P., Diddams, S. A. & Papp, S. B. Soliton crystals in Kerr resonators. Nat. Photonics 11, 671–676 (2017).

    Article  ADS  Google Scholar 

  55. Bao, C. et al. Quantum diffusion of microcavity solitons. Nat. Phys. 17, 462–466 (2021).

    Article  Google Scholar 

  56. Guidry, M. A., Lukin, D. M., Yang, K. Y., Trivedi, R. & Vučković, J. Quantum optics of soliton microcombs. Nat. Photonics 16, 52–58 (2022).

    Article  ADS  Google Scholar 

  57. McKinstrie, C. J. & Radic, S. Phase-sensitive amplification in a fiber. Opt. Express 12, 4973–4979 (2004).

    Article  ADS  Google Scholar 

  58. Slavík, R. et al. All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nat. Photonics 4, 690–695 (2010).

    Article  ADS  Google Scholar 

  59. Ye, Z. et al. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv. 7, eabi8150 (2021).

    Article  ADS  Google Scholar 

  60. Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153 (2017).

    Article  ADS  Google Scholar 

  61. Bondila, M., Barashenkov, I. V. & Bogdan, M. M. Topography of attractors of the parametrically driven nonlinear Schrödinger equation. Physica D 87, 314–320 (1995).

    Article  ADS  Google Scholar 

  62. Krückel, C. J., Fülöp, A., Ye, Z., Andrekson, P. A. & Torres-Company, V. Optical bandgap engineering in nonlinear silicon nitride waveguides. Opt. Express 25, 15370–15380 (2017).

    Article  ADS  Google Scholar 

  63. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  64. Moille, G. et al. Integrated buried heaters for efficient spectral control of air-clad microresonator frequency combs. APL Photonics 7, 126104 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.E. aknowledges financial support from the Marsden Fund of the Royal Society of New Zealand Te Apārangi. G.M. and K.S. acknowledge support from the NIST-on-a-chip programme. J.F. acknowledges the CNRS (IRP WALL-IN project).

Author information

Authors and Affiliations

Authors

Contributions

G.M. performed all of the experiments and assisted in the interpretation of the results. M.L. and D.P. contributed to the theoretical development of the scheme and performed initial simulations to confirm the fundamental viability of the scheme. N.E. and F.L. provided guidance on parametrically driven soliton theory. J.F. assisted in the interpretation of Kerr cavity physics. K.S. supervised and obtained funding for the experiments. M.E. developed the theory, performed the simulations and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Miro Erkintalo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Xu Yi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Extended visualization of numerical simulation results shown in Fig. 2c.

(a) Snapshot of the total temporal intensity profile at the simulation output over the entire simulation time window (corresponding to one resonator round trip time). Inset shows a zoom around the two solitons. (b) Temporal intensity profiles of fields centred around the pump frequencies ω± (orange and green curves) and the degenerate FWM frequency ω0 = (ω+ + ω)/2 (blue curve). Inset shows a zoom around the two solitons. The intensity traces in (b) were obtained from the full simulated field envelope by spectrally isolating the relevant frequency components via numerical filtering.

Extended Data Fig. 2 Linear phase-matching of nonlinear Bragg scattering.

Two strong pumps with angular frequencies ω± (with ω+ > ω) can spectrally translate a low-power signal wave at ωS to a new idler frequency ωI via the process of nonlinear Bragg scattering four-wave-mixing: ωI = ωS + ω+ − ω. The blue solid curve shows the linear phase-mismatch of the Bragg scattering FWM for parameters relevant to our experiment (for example resonator dispersion, pump frequencies): Δϕ = β(ωI) + β(ω) − β(ω+) − β(ωS), where β(ω) is the propagation constant of the resonator mode. The phase-mismatch crosses zero at a signal frequency of about 232.5 THz, corresponding to an idler frequency of about 354.5 THz. This phase-matching suggests that the spectral features around 350 THz observed in the experimentally measured spectrum shown in Fig. 3(e) originate from Bragg scattering translation of soliton components at about 232 THz.

Supplementary information

Supplementary Information

Supplementary Notes 1–7 and Figs. 1–4.

Supplementary Video 1

Animation corresponding to the temporal dynamics shown in Fig. 2b. The animation shows numerical simulation results, illustrating the evolution of the total intensity profile from an initial condition consisting of two hyperbolic secant pulses to a steady-state configuration of two PDCSs. The intensity profile exhibits rapid oscillations due to the beating between the quasi-CW intracavity fields at the pump frequencies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moille, G., Leonhardt, M., Paligora, D. et al. Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01401-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing