Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of directional switching by the bacterial flagellum

Abstract

The bacterial flagellum is a macromolecular protein complex that harvests energy from uni-directional ion flow across the inner membrane to power bacterial swimming via rotation of the flagellar filament. Rotation is bi-directional, with binding of a cytoplasmic chemotactic response regulator controlling reversal, though the structural and mechanistic bases for rotational switching are not well understood. Here we present cryoelectron microscopy structures of intact Salmonella flagellar basal bodies (3.2–5.5 Å), including the cytoplasmic C-ring complexes required for power transmission, in both counter-clockwise and clockwise rotational conformations. These reveal 180° movements of both the N- and C-terminal domains of the FliG protein, which, when combined with a high-resolution cryoelectron microscopy structure of the MotA5B2 stator, show that the stator shifts from the outside to the inside of the C-ring. This enables rotational switching and reveals how uni-directional ion flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of the CCW rotating state of the S. Typhimurium flagellar C-ring.
Fig. 2: Structure of the CW rotating state of the S. Typhimurium flagellar C-ring and large domain rearrangements between the CCW and CW states.
Fig. 3: Both FliGN and FliGM domains are completed via inter-subunit domain swaps but FliGN inverts which subunit contributes the C-terminal portion of the fold in the CCW and CW states.
Fig. 4: Design, purification and cryo-EM structure of a stator complex bound to FliGC.
Fig. 5: Overlaying MotA5B2–FliG on the CCW and CW C-rings reveals the stator complex switches from the outside to inside the C-ring.
Fig. 6: Mechanism for switching based on structures for CCW and CW flagellar C-rings.

Similar content being viewed by others

Data availability

Cryo-EM volumes and atomic models have been deposited to the EMDB (accession codes EMD-42376, EMD-42387, EMD-42439, EMD-42451 and EMD-42139) and PDB (accession codes 8UMD, 8UMX, 8UOX, 8UPL and 8UCS). PDB entries 3AJC, 1LKV, 3USW and 3USY were used for structural superpositions. Source data are provided with this paper.

Code availability

All code used for cryo-EM data analysis, structure determination and refinement are publicly available.

References

  1. Berg, H. C. Bacterial behaviour. Nature 254, 389–392 (1975).

    Article  CAS  PubMed  Google Scholar 

  2. Berg, H. C. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72, 19–54 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Nakamura, S. & Minamino, T. Flagella-driven motility of bacteria. Biomolecules https://doi.org/10.3390/biom9070279 (2019).

  4. Carroll, B. L. & Liu, J. Structural conservation and adaptation of the bacterial flagella motor. Biomolecules https://doi.org/10.3390/biom10111492 (2020).

  5. Minamino, T. & Imada, K. The bacterial flagellar motor and its structural diversity. Trends Microbiol. 23, 267–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Johnson, S. et al. Symmetry mismatch in the MS-ring of the bacterial flagellar rotor explains the structural coordination of secretion and rotation. Nat. Microbiol. 5, 966–975 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Berg, H. C. Torque generation by the flagellar rotary motor. Biophys. J. 68, 163S–166S (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Minamino, T., Morimoto, Y. V., Hara, N., Aldridge, P. D. & Namba, K. The bacterial flagellar type III export gate complex is a dual fuel engine that can use both H+ and Na+ for flagellar protein export. PLoS Pathog. 12, e1005495 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M. & Van der Drift, C. A protonmotive force drives bacterial flagella. Proc. Natl Acad. Sci. USA 74, 3060–3064 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wadhams, G. H. & Armitage, J. P. Making sense of it all: bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Deme, J. C. et al. Structures of the stator complex that drives rotation of the bacterial flagellum. Nat. Microbiol 5, 1553–1564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Santiveri, M. et al. Structure and function of stator units of the bacterial flagellar motor. Cell 183, 244–257.e16 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Leake, M. C. et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443, 355–358 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Lele, P. P., Hosu, B. G. & Berg, H. C. Dynamics of mechanosensing in the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 110, 11839–11844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nord, A. L. et al. Catch bond drives stator mechanosensitivity in the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 114, 12952–12957 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reid, S. W. et al. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc. Natl Acad. Sci. USA 103, 8066–8071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wadhwa, N., Sassi, A., Berg, H. C. & Tu, Y. A multi-state dynamic process confers mechano-adaptation to a biological nanomachine. Nat. Commun. 13, 5327 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Francis, N. R., Sosinsky, G. E., Thomas, D. & DeRosier, D. J. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235, 1261–1270 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Thomas, D. R., Morgan, D. G. & DeRosier, D. J. Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc. Natl Acad. Sci. USA 96, 10134–10139 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas, D. R., Francis, N. R., Xu, C. & DeRosier, D. J. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J. Bacteriol. 188, 7039–7048 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carroll, B. L. et al. The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching. eLife https://doi.org/10.7554/eLife.61446 (2020).

  22. Chang, Y. et al. Molecular mechanism for rotational switching of the bacterial flagellar motor. Nat. Struct. Mol. Biol. 27, 1041–1047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Minamino, T., Kinoshita, M. & Namba, K. Directional switching mechanism of the bacterial flagellar motor. Comput. Struct. Biotechnol. J. 17, 1075–1081 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, Y., Carroll, B. L. & Liu, J. Structural basis of bacterial flagellar motor rotation and switching. Trends Microbiol. 29, 1024–1033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Afanzar, O. et al. The switching mechanism of the bacterial rotary motor combines tight regulation with inherent flexibility. EMBO J. 40, e104683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan, J. & Berg, H. C. Ultrasensitivity of an adaptive bacterial motor. J. Mol. Biol. 425, 1760–1764 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Fukuoka, H., Sagawa, T., Inoue, Y., Takahashi, H. & Ishijima, A. Direct imaging of intracellular signaling components that regulate bacterial chemotaxis. Sci. Signal 7, ra32 (2014).

    Article  PubMed  Google Scholar 

  28. Young, H. S., Dang, H., Lai, Y., DeRosier, D. J. & Khan, S. Variable symmetry in Salmonella Typhimurium flagellar motors. Biophys. J. 84, 571–577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baker, M. A. et al. Domain-swap polymerization drives the self-assembly of the bacterial flagellar motor. Nat. Struct. Mol. Biol. 23, 197–203 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. McDowell, M. A. et al. Characterisation of Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS. Mol. Microbiol. 99, 749–766 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Paul, K., Brunstetter, D., Titen, S. & Blair, D. F. A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc. Natl Acad. Sci. USA 108, 17171–17176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kinoshita, M. et al. Insight into adaptive remodeling of the rotor ring complex of the bacterial flagellar motor. Biochem. Biophys. Res. Commun. 496, 12–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Irikura, V. M., Kihara, M., Yamaguchi, S., Sockett, H. & Macnab, R. M. Salmonella Typhimurium FliG and FliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. J. Bacteriol. 175, 802–810 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Welch, M., Oosawa, K., Aizawa, S. & Eisenbach, M. Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. Proc. Natl Acad. Sci. USA 90, 8787–8791 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, S. Y. et al. Crystal structure of an activated response regulator bound to its target. Nat. Struct. Biol. 8, 52–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Dyer, C. M., Vartanian, A. S., Zhou, H. & Dahlquist, F. W. A molecular mechanism of bacterial flagellar motor switching. J. Mol. Biol. 388, 71–84 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Antani, J. D. et al. Mechanosensitive recruitment of stator units promotes binding of the response regulator CheY-P to the flagellar motor. Nat. Commun. 12, 5442 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bai, F. et al. Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327, 685–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Johnson, S. et al. Molecular structure of the intact bacterial flagellar basal body. Nat. Microbiol. 6, 712–721 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palovcak, E. et al. A simple and robust procedure for preparing graphene-oxide cryo-EM grids. J. Struct. Biol. 204, 80–84 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Caesar, J. et al. SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. J. Struct. Biol. X 4, 100040 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife https://doi.org/10.7554/eLife.42166 (2018).

  43. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Asarnow, D., Palovcak, E. & Cheng, Y. UCSF pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).

  45. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  50. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Johnson and A. Costin (Central Oxford Structural Molecular Imaging Centre) and D. Shi (NCI) for assistance with data collection; H. Elmlund (NCI) for access to SIMPLE code ahead of release. This research was funded (in part) by the Intramural Research Program of the NIH (to S.M.L.). The Central Oxford Structural Molecular Imaging Centre is supported by the Wellcome Trust (no. 201536), The EPA Cephalosporin Trust, The Wolfson Foundation and a Royal Society/Wolfson Foundation Laboratory Refurbishment Grant (no. WL160052). Research in S.M.L.’s laboratory was supported by Wellcome Trust Investigator (no. 219477) and Collaborative awards (no. 209194) and an MRC Programme grant (no. S021264).

Author information

Authors and Affiliations

Authors

Contributions

S.J., J.C.D. and S.M.L. designed the project, interpreted the EM data and built atomic models. E.J.F. optimized the preparation of the basal body samples, prepared samples and made EM grids. J.C.D. prepared samples, made and screened EM grids and together with S.M.L. collected the EM data. J.C. assisted with EM data processing. F.F.V.C. and K.T.H. created the bacterial strain used for basal body preparation. S.J., S.M.L. and J.C.D. contributed to writing the first draft of the manuscript and all authors commented on manuscript drafts.

Corresponding authors

Correspondence to Steven Johnson or Susan M. Lea.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Gert Bange, Julien Bergeron and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Cryo-EM processing workflow, showing local and global map quality for the CCW C-ring structure.

a, Image processing workflow for the CCW C-ring. b, Gold-standard FSC curves used for global-resolution estimates within cryoSPARC. c, Local-resolution estimation of reconstructed map as determined within cryoSPARC.

Extended Data Fig. 2 Cryo-EM processing workflow, showing local and global map quality for the CW C-ring structure.

a, Image processing workflow for the CW C-ring. b, Gold-standard FSC curves used for global-resolution estimates within cryoSPARC. c, Local-resolution estimation of reconstructed map as determined within cryoSPARC.

Extended Data Fig. 3 Different Symmetries are apparent in 2D classes following particle classification in 3D.

2D class averages are shown for CCW and CW particles separated into different symmetries via 3D classification. An example of a side-view is shown above and a top-down view below. The subunit numbers in the top-down views can be counted to reveal a symmetry consistent with the 3D classification.

Extended Data Fig. 4 Protein domain boundaries within the context of the assembled C-ring subunit.

The C-ring subunit is shown in CCW and CW conformations with the protein chains colored FliF blue; FliG red; FliM green; FliN shades of yellow. Where termini are visible they are denoted as N or C-termini and where the view allows FliG and FliM subdomains are boxed and annotated. As shown in Fig. 3, the FliG N and M subdomains consist of residues donated from multiple C-ring subunits, hence these subdomains are shown in two boxes with the residues donated to the pro/pre-ceding subunit indicated as +/−1.

Extended Data Fig. 5 Fit of coordinates to CCW and CW cryoEM volumes.

a-e, show different views at different contour levesl of the CCW coordinates within the CCW volume.f-j, show the same for the CCW volume. a,b and f,g show the full subunits (CCW and CW respectively) at a lower (a,f) and higer (b,g) contour levels revealing the FliG domains at the top of the subunit are the most mobile regions. c,h depict the volume surrounding two of the three FliN domains, d,i the volume around FliG and e,j for two regions of FliM, all for CCW and CW respectively.

Extended Data Fig. 6 Domain swaps between C-ring subunits involving regions of FliG.

Two neighbouring C-ring subunits are shown in cartoon representation coloured pink (copy N) and either light blue (N + 1) or lavender (N-1). a,b,e, are from the CW assembly and c,d,e from the CCW. a-d, depict the domain swap to assemble the FliGM domain (dark red and dark blue to denote which subunit the sequences originate in). e-f depict the domain swap to assemble FliGN (coloured dark red and purple (e) or dark red and dark blue (f)). (g,h) The compound FliGN, FliGM and FliGC domains assembled via inter-subunit domain swaps share the same domain architecture in both the CCW (g – R.M.S.D. 2.3+/− 0.4 Å) and CW (h – R.M.S.D. 2.4+/−0.2 Å) states R.M.S.D. each domain onto all others, both states, 2.1+/− 0.6 Å. Two views of the overlaid domains in a cartoon representation are shown for each state with the domains coloured as shown in the key.

Extended Data Fig. 7 Complexity of Subunit Packing within the CCW and CW C-rings.

a, An unanticipated packing between a secondary structural element immediately following the FliMM domain leads to further inter-subunit packing interactions between FliM and FliN in addition to the previously proposed lock-washer interactions. This new element occurs in both states with subtly different contacts. b, A single subunit is colored red in the context of the C34 C-ring in both states to emphasise how the vertical subunits visible in previous low-resolution volumes are constructed from domains originated in multiple subunits. c, A subunit taken from a CW state (red ribbon) is incompatible with packing between subunits in the CCW states reinforcing the cooperativity in switching states that must exist. d, FliM Arginine 63 and 181 from the N and N + 1 subunits respectively, are proximal to each other at the subunit interface in the CW state, e, but are separated in the CCW state.

Extended Data Fig. 8 Structural Implications of the PAA CW-locking mutation.

a, Two subunits in the CCW states are shown colored light pink (N) and light blue (N + 1) with the FliG PAA sequence that, when deleted, locks the C-ring in the CW state highlighted in dark red and the FliG linker between FliGM and FliGC highlighted in dark blue. b, When the FliGM domains are used to overlay the CCW (light pink) and CW (silver) states the deletion of the PAA sequence (dark red in the CW state) leads to a pulling-up of that helix and reorientation of the FliGM-FliGC linker. c, overlaying the CCW (light pink) and CW (silver) by matching of the FliMM domain reveals how the FliGM helix containing the PAA sequence (dark red in the CCW state), is reoriented altering the side chains presented for interaction with the FliMM domain below. d-e, the linker between the FliGM and FliGC domains (green cartoon) is also in the inter-subunit interface and reorients becoming more helical in switching between CCW and CW states. d, shows full cartoon view of two neighbouring subunits in CCW (LHS) and CW (RHS) states with the PAA highlighted in red, the FliGM-FliGN linker in dark blue and the FliGM-FliGC linker in green. e, shows a closeup slab removing overlaying elements colored in the same way. f, The arrangement of the FliGC (residues 234–331) differs by a rotation of 180° between the CCW (light green) and CW (dark green) structures relative to FliGM (residues 198–233 shown at bottom of panels and used to generate overlays). g-h,Previous crystal structures of FliGC/FliGM have revealed a variety of different arrangements between the domains. Earlier crystal structures (PDB ids 3ajc, 1lkv, 3usw and 3usy (two chains independently overlaid)) were overlaid onto the CCW (panel g) and CW (panel h) FliGM-198–233 using matchmaker within ChimeraX. None of the earlier crystal structures place the C subdomain in either position seen within the C-ring states.

Extended Data Fig. 9 Cryo-EM processing workflow, showing local and global map quality for MotAB + FliGc.

a, Image processing workflow for MotAB + FliGc. b, Gold-standard FSC curves used for global-resolution estimates within cryoSPARC. c, Local-resolution estimation of reconstructed map as determined within cryoSPARC.

Extended Data Fig. 10 Structural alignment of C. sporogenes MotAB with FliG-bound MotAB.

C. sporogenes MotAB (PDB: 6YSF) superposed with FliG-bound MotAB structure presented in this study. MotAB shown in orange, FliG-bound MotAB shown blue. FliG and plug domains not modelled in 6YSF are transparent.

Supplementary information

Source data

Source Data Fig. 4

Source data for size-exclusion graph.

Source Data Fig. 4

Unprocessed gel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, S., Deme, J.C., Furlong, E.J. et al. Structural basis of directional switching by the bacterial flagellum. Nat Microbiol (2024). https://doi.org/10.1038/s41564-024-01630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41564-024-01630-z

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology