Skip to main content
Log in

High-performance Ti3C2Tx achieved by polyaniline intercalation and gelatinization as a high-energy cathode for zinc-ion capacitor

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The actual manufacture of supercapacitors (SCs) is restricted by the inadequate energy density, and the energy density of devices can be properly promoted by assembling zinc-ion capacitors (ZICs) which used capacitive cathode and battery-type anode. Two-dimensional (2D) MXene has brought great focuses in the electrode research on the foundation of large redox-active surface, but the specific capacitance is still affected by the tight stacking of interlaminations. Ti3C2Tx@polyaniline (PANI) heterostructures are prepared by uniformly depositing the conductive polymer PANI nanorods as the intercalation agent into the external of Ti3C2Tx nanosheets to inhibit stacking. Subsequently, by using graphene oxide (GO)-assisted low-temperature hydrothermal self-assembly manufacture, 2D heterostructures are assembled into the three-dimensional (3D) porous crosslinked Ti3C2Tx@PANI-reduced graphene oxide (RGO) hydrogels. Attributed to the synergistic work of PANI nanorods, Ti3C2TX nanosheets, and 3D crosslinking frameworks of RGO to match capacitive and battery effects, 3D porous hierarchical Ti3C2Tx@PANI-RGO heterostructure hydrogels have rich ion transport channels, a large number of active sites, and excellent reaction kinetics. ZIC is assembled by using Ti3C2Tx@PANI-RGO heterostructure hydrogels as cathodes and zinc foil as anodes. In this work, Ti3C2Tx@PANI-RGO//Zn ZIC exhibits a wide working window (2.0 V), marked specific capacitance (589.89 F·g−1 at 0.5 A·g−1), salient energy density (327.71 Wh·kg−1 at 513.61 W·kg−1 and 192.20 Wh·kg−1 at 13,005.87 W·kg−1), and durable cycling stability (97.87% capacitance retention after 10,000 cycles at 10 A·g−1). This study emphasizes the device design of ZICs and the broad prospect of Ti3C2Tx-based hydrogels as viable cathodes for ZICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Niu, L.; Wu, T. Z.; Chen, M.; Yang, L.; Yang, J. J.; Wang, Z. X.; Kornyshev, A. A.; Jiang, H. L.; Bi, S.; Feng, G. Conductive metal-organic frameworks for supercapacitors. Adv. Mater. 2022, 34, 2200999.

    Article  CAS  Google Scholar 

  2. Pacchioni, G. Sustainable flexible supercapacitors. Nat. Rev. Mater. 2022, 7, 844.

    Article  ADS  Google Scholar 

  3. Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

    Article  CAS  PubMed  Google Scholar 

  4. Pameté, E.; Köps, L.; Kreth, F. A.; Pohlmann, S.; Varzi, A.; Brousse, T.; Balducci, A.; Presser, V. The many deaths of supercapacitors: Degradation, aging, and performance fading. Adv. Energy Mater. 2023, 13, 2301008.

    Article  Google Scholar 

  5. Mo, T. M.; Wang, Z. X.; Zeng, L.; Chen, M.; Kornyshev, A. A.; Zhang, M. C.; Zhao, Y. Q.; Feng, G. Energy storage mechanism in supercapacitors with porous graphdiynes: Effects of pore topology and electrode metallicity. Adv. Mater. 2023, 35, 2301118.

    Article  CAS  Google Scholar 

  6. Hua, M. T.; Wu, S. W.; Jin, Y.; Zhao, Y. S.; Yao, B. W.; He, X. M. Tough-hydrogel reinforced low-tortuosity conductive networks for stretchable and high-performance supercapacitors. Adv. Mater. 2021, 33, 2100983.

    Article  CAS  Google Scholar 

  7. Shao, H.; Wu, Y. C.; Lin, Z. F.; Taberna, P. L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039.

    Article  CAS  PubMed  Google Scholar 

  8. Russell, J. C.; Posey, V. A.; Gray, J.; May, R.; Reed, D. A.; Zhang, H.; Marbella, L. E.; Steigerwald, M. L.; Yang, Y.; Roy, X. et al. High-performance organic pseudocapacitors via molecular contortion. Nat. Mater. 2021, 20, 1136–1141.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Jayaramulu, K.; Horn, M.; Schneemann, A.; Saini, H.; Bakandritsos, A.; Ranc, V.; Petr, M.; Stavila, V.; Narayana, C.; Scheibe, B. et al. Covalent graphene-MOF hybrids for high-performance asymmetric supercapacitors. Adv. Mater. 2021, 33, 2004560.

    Article  CAS  Google Scholar 

  10. Kandambeth, S.; Jia, J. T.; Wu, H.; Kale, V. S.; Parvatkar, P. T.; Czaban-Jóźwiak, J.; Zhou, S.; Xu, X. M.; Ameur, Z. O.; Abou-Hamad, E. et al. Covalent organic frameworks as negative electrodes for high-performance asymmetric supercapacitors. Adv. Energy Mater. 2020, 10, 2001673.

    Article  CAS  Google Scholar 

  11. Xu, L. M.; Zhou, W. Q.; Chao, S. X.; Liang, Y. M.; Zhao, X. Q.; Liu, C. C.; Xu, J. K. Advanced oxygen-vacancy Ce-doped MoO3 ultrathin nanoflakes anode materials used as asymmetric supercapacitors with ultrahigh energy density. Adv. Energy Mater. 2022, 12, 2200101.

    Article  CAS  Google Scholar 

  12. Ock, I. W.; Lee, J.; Kang, J. K. Hybrid capacitors: Metal-organic framework-derived anode and polyaniline chain networked cathode with mesoporous and conductive pathways for high energy density, ultrafast rechargeable, and long-life hybrid capacitors. Adv. Energy Mater. 2020, 10, 2070194.

    Article  CAS  Google Scholar 

  13. Wang, P. J.; Xie, X. S.; Xing, Z. Y.; Chen, X. H.; Fang, G. Z.; Lu, B. A.; Zhou, J.; Liang, S. Q.; Fan, H. J. Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy Mater. 2021, 11, 2101158.

    Article  CAS  Google Scholar 

  14. Yin, J.; Zhang, W. L.; Wang, W. X.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical Zinc Ion capacitors enhanced by redox reactions of porous carbon cathodes. Adv. Energy Mater. 2020, 10, 2001705.

    Article  CAS  Google Scholar 

  15. Fei, R. X.; Wang, H. W.; Wang, Q.; Qiu, R. Y.; Tang, S. S.; Wang, R.; He, B. B.; Gong, Y. S.; Fan, H. J. In situ hard-template synthesis of hollow bowl-like carbon: A potential versatile platform for sodium and zinc ion capacitors. Adv. Energy Mater. 2020, 10, 2002741

    Article  CAS  Google Scholar 

  16. Babu, B.; Simon, P.; Balducci, A. Fast charging materials for high power applications. Adv. Energy Mater. 2020, 10, 2001128.

    Article  CAS  Google Scholar 

  17. Yi, T. F.; Sari, H. M. K.; Li, X. Z.; Wang, F. F.; Zhu, Y. R.; Hu, J. H.; Zhang, J. J.; Li, X. F. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 2021, 85, 105955.

    Article  CAS  Google Scholar 

  18. Dong, S. Y.; Lv, N.; Wu, Y. L.; Zhu, G. Y.; Dong, X. C. Lithium-ion and sodium-ion hybrid capacitors: From insertion-type materials design to devices construction. Adv. Funct. Mater. 2021, 31, 2100455.

    Article  CAS  Google Scholar 

  19. Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Comprehensive understanding of sodium-ion capacitors: Definition, mechanisms, configurations, materials, key technologies, and future developments. Adv. Energy Mater. 2021, 11, 2003804.

    Article  CAS  Google Scholar 

  20. Liu, M. Q.; Chang, L. M.; Le, Z. Y.; Jiang, J. M.; Li, J. H.; Wang, H. R.; Zhao, C. M.; Xu, T. H.; Nie, P.; Wang, L. M. Emerging potassium-ion hybrid capacitors. Chemsuschem 2020, 13, 5837–5862.

    Article  CAS  PubMed  Google Scholar 

  21. Yin, J.; Zhang, W. L.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors: Fundamentals, materials, and systems. Adv. Energy Mater. 2021, 11, 2100201.

    Article  CAS  Google Scholar 

  22. Shang, K. Z.; Liu, Y. J.; Cai, P. W.; Li, K. K.; Wen, Z. H. N, P, and S co-doped 3D porous carbon-architectured cathode for high-performance Zn-ion hybrid capacitors. J. Mater. Chem. A 2022, 10, 6489–6498.

    Article  CAS  Google Scholar 

  23. Wang, H. Y.; Ye, W. Q.; Yang, Y.; Zhong, Y. J.; Hu, Y. Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy 2021, 85, 105942.

    Article  CAS  Google Scholar 

  24. Tang, H.; Yao, J. J.; Zhu, Y. R. Recent developments and future prospects for zinc-ion hybrid capacitors: A review. Adv. Energy Mater. 2021, 11, 2003994.

    Article  CAS  Google Scholar 

  25. Wang, Q.; Wang, S. L.; Guo, X. H.; Ruan, L. M.; Wei, N.; Ma, Y.; Li, J. Y.; Wang, M.; Li, W. Q.; Zeng, W. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 2019, 5, 1900537.

    Article  CAS  Google Scholar 

  26. Dong, L. B.; Yang, W.; Yang, W.; Li, Y.; Wu, W. J.; Wang, G. X. Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A 2019, 7, 13810–13832.

    Article  CAS  Google Scholar 

  27. Wang, Z. T.; Zhang, M. Q.; Ma, W. T.; Zhu, J. B.; Song, W. X. Application of carbon materials in aqueous zinc ion energy storage devices. Small 2021, 17, 2100219.

    Article  CAS  Google Scholar 

  28. Ma, R.; Chen, Z. T.; Zhao, D. N.; Zhang, X. J.; Zhuo, J. T.; Yin, Y. J.; Wang, X. F.; Yang, G. W.; Yi, F. Ti3C2Tx MXene for electrode materials of supercapacitors. J. Mater. Chem. A 2021, 9, 11501–11529.

    Article  CAS  Google Scholar 

  29. Zhang, C. F.; Ma, Y. L.; Zhang, X. T.; Abdolhosseinzadeh, S.; Sheng, H. W.; Lan, W.; Pakdel, A.; Heier, J.; Nuesch, F. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29–55.

    Article  CAS  Google Scholar 

  30. Sun, S. J.; Liao, C.; Hafez, A. M.; Zhu, H. L.; Wu, S. P. Two-dimensional MXenes for energy storage. Chem. Eng. J. 2018, 338, 27–45.

    Article  CAS  Google Scholar 

  31. Nasrin, K.; Sudharshan, V.; Subramani, K.; Sathish, M. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater. 2022, 32, 2110267.

    Article  CAS  Google Scholar 

  32. Mohammadi, A. V.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

    Article  Google Scholar 

  33. Hemanth, N. R.; Kandasubramanian, B. Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting applications: A review. Chem. Eng. J. 2020, 392, 123678.

    Article  CAS  Google Scholar 

  34. Mateen, A.; Ansari, M. Z.; Abbas, Q.; Muneeb, A.; Hussain, A.; Eldin, E. T.; Alzahrani, F. M.; Alsaiari, N. S.; Ali, S.; Javed, M. S. In situ nitrogen functionalization of 2D-Ti3C2Tx-MXenes for high-performance Zn-ion supercapacitor. Molecules 2022, 27, 7446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, X. D.; Zhang, Y. L.; Sun, H. Y.; Zhou, J. W.; Yang, F.; Li, H.; Chen, H.; Chen, Y. C.; Liu, Z.; Qiu, Z. P. et al. Progress and perspective: MXene and mxene-based nanomaterials for high-performance energy storage devices. Adv. Electron. Mater. 2021, 7, 2000967.

    Article  CAS  Google Scholar 

  36. Yi, S.; Wang, L.; Zhang, X.; Li, C.; Liu, W. J.; Wang, K.; Sun, X. Z.; Xu, Y. N.; Yang, Z. X.; Cao, Y. et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci. Bull. 2021, 66, 914–924

    Article  CAS  Google Scholar 

  37. Li, K.; Liang, M. Y.; Wang, H.; Wang, X. H.; Huang, Y. S.; Coelho, J.; Pinilla, S.; Zhang, Y. L.; Qi, F. W.; Nicolosi, V. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.

    Article  CAS  Google Scholar 

  38. Eftekhari, A.; Li, L.; Yang, Y. Polyaniline supercapacitors. J. Power Sources 2017, 347, 86–107.

    Article  ADS  CAS  Google Scholar 

  39. Li, Y.; Kamdem, P.; Jin, X. J. Hierarchical architecture of MXene/PANI hybrid electrode for advanced asymmetric supercapacitors. J. Alloys Compd. 2021, 850, 156608.

    Article  CAS  Google Scholar 

  40. Beygisangchin, M.; Rashid, S. A.; Shafie, S.; Sadrolhosseini, A. R.; Lim, H. N. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review. Polymers 2021, 13, 2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y. X.; Yang, Y.; Deng, B. W.; Jing, L.; Yin, B.; Yang, M. B. Vertically aligned polyaniline nano-array decorated on ultra-thin MXene nanosheets for high energy density supercapacitors. J. Energy Storage 2022, 56, 105893.

    Article  Google Scholar 

  42. Wei, Y. D.; Luo, W. L.; Li, X.; Lin, Z. T.; Hou, C. P.; Ma, M. L.; Ding, J. X.; Li, T. X.; Ma, Y. PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim. Acta 2022, 406, 139874.

    Article  CAS  Google Scholar 

  43. Liu, W. F.; Zheng, Y. F.; Zhang, Z.; Zhang, Y. N.; Wu, Y. H.; Gao, H. X.; Su, J.; Gao, Y. H. Ultrahigh gravimetric and volumetric capacitance in Ti3C2Tx MXene negative electrode enabled by surface modification and in-situ intercalation. J. Power Sources 2022, 521, 230965

    Article  CAS  Google Scholar 

  44. Wang, Y. M.; Wang, X.; Li, X. L.; Bai, Y.; Xiao, H. H.; Liu, Y.; Yuan, G. H. Scalable fabrication of polyaniline nanodots decorated MXene film electrodes enabled by viscous functional inks for high-energy-density asymmetric supercapacitors. Chem. Eng. J. 2021, 405, 126664.

    Article  CAS  Google Scholar 

  45. Lee, K. S.; Park, C. W.; Lee, S. J.; Kim, J. D. Hierarchical zinc oxide/graphene oxide composites for energy storage devices. J. Alloys Compd. 2018, 739, 522–528.

    Article  CAS  Google Scholar 

  46. Korkmaz, S.; Kariper, İ. A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage 2020, 27, 101038.

    Article  Google Scholar 

  47. Ji, J. Y.; Zhou, H.; Xiong, L. J.; Li, L.; Yu, X. H.; Wei, L. Synthesis of nitrogen-doped reduced graphene oxide/SnO2 composite hydrogels and characterization of electrode materials. Mater. Res. Express 2019, 6, 0850g7.

    Article  CAS  Google Scholar 

  48. Askari, M. B.; Salarizadeh, P.; Seifi, M.; Zadeh, M. H. R.; Di Bartolomeo, A. ZnFe2O4 nanorods on reduced graphene oxide as advanced supercapacitor electrodes. J. Alloys Compd. 2021, 860, 158497.

    Article  CAS  Google Scholar 

  49. Luo, W. L.; Wei, Y. D.; Zhuang, Z.; Lin, Z. T.; Li, X.; Hou, C. P.; Li, T. X.; Ma, Y. Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim. Acta 2022, 406, 139871.

    Article  CAS  Google Scholar 

  50. Huang, Z. D.; Chen, A.; Mo, F. N.; Liang, G. J.; Li, X. L.; Yang, Q.; Guo, Y.; Chen, Z.; Li, Q.; Dong, B. B. et al. Phosphorene as cathode material for high-voltage, anti-self-discharge Zinc Ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 2001024.

    Article  CAS  Google Scholar 

  51. Liu, Y.; Wu, L. J. Recent advances of cathode materials for zinc-ion hybrid capacitors. Nano Energy 2023, 109, 108290.

    Article  CAS  Google Scholar 

  52. Liu, X.; Sun, Y. J.; Tong, Y.; Wang, X. Y.; Zheng, J. F.; Wu, Y. A. J.; Li, H. Y.; Niu, L.; Hou, Y. Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review. Nano Energy 2021, 86, 106070

    Article  CAS  Google Scholar 

  53. Guo, N. L.; Lin, Y. M.; Cui, Y. F.; Su, S. Y.; Dai, H. M.; Yang, J. B.; Zhu, X. H. Effect of MWCNTs additive on preservation stability of rGO powder. J. Mater. Sci. Mater. Electron. 2022, 33, 6766–6779.

    Article  CAS  Google Scholar 

  54. Zhou, Z. M.; Zhou, X. Y.; Zhang, M.; Mu, S. N.; Liu, Q. R.; Tang, Y. B. In situ two-step activation strategy boosting hierarchical porous carbon cathode for an aqueous Zn-based hybrid energy storage device with high capacity and ultra-long cycling life. Small. 2020, 16, 2003174

    Article  CAS  Google Scholar 

  55. Lee, Y. G.; An, G. H. Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors. ACS Appl. Mater. Interfaces 2020, 12, 41342–41349.

    Article  ADS  CAS  PubMed  Google Scholar 

  56. An, G. H.; Cha, S.; Sohn, J. I. Surface tailoring of zinc electrodes for energy storage devices with high-energy densities and long cycle life. Appl. Surf. Sci. 2019, 467-468, 1157–1160

    Article  ADS  Google Scholar 

  57. Zhang, Y. M.; Wang, Z. P.; Li, D. P.; Sun, Q.; Lai, K. R.; Li, K. K.; Yuan, Q. H.; Liu, X. J.; Ci, L. J. Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. J. Mater. Chem. A 2020, 8, 22874–22885.

    Article  CAS  Google Scholar 

  58. An, G. H.; Hong, J.; Pak, S.; Cho, Y.; Lee, S.; Hou, B.; Cha, S. 2D metal Zn nanostructure electrodes for high-performance Zn ion supercapacitors. Adv. Energy Mater. 2020, 10, 1902981

    Article  CAS  Google Scholar 

  59. Zhao, Y.; Hao, H. L.; Song, T. L.; Wang, X.; Li, C. W.; Li, W. Y. High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode. J. Power Sources 2022, 521, 230941.

    Article  CAS  Google Scholar 

  60. Zhao, P.; Yang, B. J.; Chen, J. T.; Lang, J. W.; Zhang, T. Y.; Yan, X. B. A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon. Acta Phys.—Chim. Sin. 2020, 36, 1904050.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFC2105900) and the National Natural Science Foundation of China (No. 52073022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zenghui Qiu or Haijun Xu.

Electronic supplementary material

12274_2024_6531_MOESM1_ESM.pdf

High-performance Ti3C2Tx achieved by polyaniline intercalation and gelatinization as a high-energy cathode for zinc-ion capacitor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, P., Geng, Z., Zhang, X. et al. High-performance Ti3C2Tx achieved by polyaniline intercalation and gelatinization as a high-energy cathode for zinc-ion capacitor. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6531-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6531-7

Keywords

Navigation