Skip to main content
Log in

High-efficiency Ce-modified ZSM-5 nanosheets for waste plastic upgrading

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Zeolite-based catalyst hydrocracking of plastics is a potential strategy for mitigating the environmental impacts of plastic wastes and recycling valuable resources, but difficult mass transfer, low concentration of acid sites, and high cost are still barriers to their practical applications. In this paper, we report an excellent hydrocracking catalyst of ZSM-5 nanosheets (Ce/b-ZSM-5) modified by Ce species with high conversion up to 96.3%, C3–C5 selectivity up to 80.9%, and good stability during the hydrogenation of low-density polyethylene. Through comprehensive studies, b-ZSM-5 shows higher molecular diffusion efficiency and acid site concentrations compared with normal ZSM-5 (n-ZSM-5) and hollow ZSM-5 (h-ZSM-5). The introduction of Ce species into b-ZSM-5 further increases the density of Brønsted (B) and Lewis (L) acid sites as active sites, which enhances the adsorption of substrates and facilitates the formation of intermediates and desorption of products. As a result, the hydrocracking activity of Ce/b-ZSM-5 is significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rochman, C. M.; Hoellein, T. The global odyssey of plastic pollution. Science 2020, 368, 1184–1185.

    Article  ADS  CAS  PubMed  Google Scholar 

  2. MacLeod, M.; Arp, H. P. H.; Tekman, M. B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Van Geem, K. M. Plastic waste recycling is gaining momentum. Science 2023, 381, 607–608.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Sardon, H.; Dove, A. P. Plastics recycling with a difference. Science 2018, 360, 380–381.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wang, M.; Ma, D. Upcycling contaminated plastics. Nat. Sustain. 2023, 6, 1151–1152.

    Article  Google Scholar 

  6. Jehanno, C.; Alty, J. W.; Roosen, M.; De Meester, S.; Dove, A. P.; Chen, E. Y. X.; Leibfarth, F. A.; Sardon, H. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022, 603, 803–814.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Weckhuysen, B. M. Creating value from plastic waste. Science 2020, 370, 400–401.

    Article  PubMed  Google Scholar 

  8. Zhang, M. Q.; Wang, M.; Sun, B.; Hu, C. Q.; Xiao, D. Q.; Ma, D. Catalytic strategies for upvaluing plastic wastes. Chem 2022, 8, 2912–2923.

    Article  CAS  Google Scholar 

  9. Dong, Q.; Lele, A. D.; Zhao, X. P.; Li, S. K.; Cheng, S. C.; Wang, Y. Q.; Cui, M. J.; Guo, M.; Brozena, A. H.; Lin, Y. et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 2023, 616, 488–494.

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Rahman, M. Z.; Raziq, F.; Zhang, H. B.; Gascon, J. Key Strategies for enhancing H2 production in transition metal oxide based photocatalysts. Angew. Chem., Int. Ed. 2023, 62, e202305385.

    Article  CAS  Google Scholar 

  11. Martín, A. J.; Mondelli, C.; Jaydev, S. D.; Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 2021, 7, 1487–1533.

    Article  Google Scholar 

  12. Zhang, F.; Wang, F.; Wei, X. Y.; Yang, Y.; Xu, S. M.; Deng, D. H.; Wang, Y. Z. From trash to treasure: Chemical recycling and upcycling of commodity plastic waste to fuels, high-valued chemicals and advanced materials. J. Energy Chem. 2022, 69, 369–388.

    Article  CAS  Google Scholar 

  13. Dong, Z. W.; Chen, W. J.; Xu, K. Q.; Liu, Y.; Wu, J.; Zhang, F. Understanding the structure–activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: A critical review. ACS Catal. 2022, 12, 14882–14901.

    Article  CAS  Google Scholar 

  14. Li, L.; Luo, H.; Shao, Z. L.; Zhou, H. Z.; Lu, J. W.; Chen, J. J.; Huang, C. J.; Zhang, S. N.; Liu, X. F.; Xia, L. et al. Converting plastic wastes to naphtha for closing the plastic loop. J. Am. Chem. Soc. 2023, 145, 1847–1854.

    Article  CAS  PubMed  Google Scholar 

  15. Rorrer, J. E.; Ebrahim, A. M.; Questell-Santiago, Y.; Zhu, J.; Troyano-Valls, C.; Asundi, A. S.; Brenner, A. E.; Bare, S. R.; Tassone, C. J.; Beckham, G. T. et al. Role of bifunctional Ru/acid catalysts in the selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons. ACS Catal. 2022, 12, 13969–13979.

    Article  CAS  Google Scholar 

  16. Duan, J. D.; Chen, W.; Wang, C. T.; Wang, L.; Liu, Z. Q.; Yi, X. F.; Fang, W.; Wang, H.; Wei, H.; Xu, S. D. et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. J. Am. Chem. Soc. 2022, 144, 14269–14277.

    Article  CAS  PubMed  Google Scholar 

  17. Liu, S. B.; Kots, P. A.; Vance, B. C.; Danielson, A.; Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 2021, 7, eabf8283.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Shu, Y. Y.; Travert, A.; Schiller, R.; Ziebarth, M.; Wormsbecher, R.; Cheng, W. C. Effect of ionic radius of rare earth on USY zeolite in fluid catalytic cracking: Fundamentals and commercial application. Top. Catal. 2015, 58, 334–342.

    Article  CAS  Google Scholar 

  19. Li, J. C.; Zeng, P. H.; Zhao, L.; Ren, S. Y.; Guo, Q. X.; Zhao, H. J.; Wang, B. J.; Liu, H. H.; Pang, X. M.; Gao, X. H. et al. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes. J. Catal. 2015, 329, 441–448.

    Article  CAS  Google Scholar 

  20. Huang, W. H.; Su, C. Y.; Zhu, C.; Bo, T. T.; Zuo, S. W.; Zhou, W.; Ren, Y. F.; Zhang, Y. N.; Zhang, J.; Rueping, M. et al. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2023, 62, e202304634.

    Article  CAS  Google Scholar 

  21. Schüßler, F.; Schallmoser, S.; Shi, H.; Haller, G. L.; Ember, E.; Lercher, J. A. Enhancement of dehydrogenation and hydride transfer by La3+ cations in zeolites during acid catalyzed alkane reactions. ACS Catal. 2014, 4, 1743–1752.

    Article  Google Scholar 

  22. Li, X. H.; Zhang, X. L.; Shao, S. S.; Dong, L. X.; Zhang, J.; Hu, C.; Cai, Y. X. Catalytic upgrading of pyrolysis vapor from rape straw in a vacuum pyrolysis system over La/HZSM-5 with hierarchical structure. Bioresour. Technol. 2018, 259, 191–197.

    Article  CAS  PubMed  Google Scholar 

  23. He, J. Q.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene. Appl. Catal. B: Environ. 2020, 265, 118560.

    Article  CAS  Google Scholar 

  24. Chen, G. R.; Li, J. Y.; Wang, S.; Han, J.; Wang, X. X.; She, P. H.; Fan, W. B.; Guan, B. Y.; Tian, P.; Yu, J. H. Construction of single-crystalline hierarchical ZSM-5 with open nanoarchitectures via anisotropic-kinetics transformation for the methanol-to-hydrocarbons reaction. Angew. Chem., Int. Ed. 2022, 61, e202200677.

    Article  CAS  Google Scholar 

  25. Wang, C. T.; Fang, W.; Liu, Z. Q.; Wang, L.; Liao, Z. W.; Yang, Y. R.; Li, H. J.; Liu, L.; Zhou, H.; Qin, X. D. et al. Fischer-Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 2022, 17, 714–720.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qian, K. Z.; Tian, W. M.; Yin, L. J.; Yang, Z. X.; Tian, F. X.; Chen, D. Z. Aromatic production from high-density polyethylene over zinc promoted HZSM-5. Appl. Catal. B: Environ. 2023, 339, 123159.

    Article  CAS  Google Scholar 

  28. Zhang, Y. W.; Xue, M. W.; Zhou, Y. M.; Zhang, H. X.; Wang, W.; Wang, Q. L.; Sheng, X. L. Propane dehydrogenation over Ce-containing ZSM-5 supported platinum-tin catalysts: Ce concentration effect and reaction performance analysis. RSC Adv. 2016, 6, 29410–29422.

    Article  ADS  CAS  Google Scholar 

  29. Shao, X. L.; Wang, S. Q.; Zhou, Y. H.; Zhang, X.; Tian, H. Z.; Wang, Z.; Yuan, Z. Y.; Wang, H. T. Synthesis of multilamellar ZSM-5 nanosheets with tailored b-axis thickness. Microporous Mesoporous Mater. 2022, 345, 112252.

    Article  CAS  Google Scholar 

  30. Ma, Z. X.; Wang, X. X.; Ma, X. L.; Tan, M. H.; Yang, G. H.; Tan, Y. S. Catalytic roles of acid property in different morphologies of H-ZSM-5 zeolites for syngas-to-aromatics conversion over ZnCrOx/H-ZSM-5 catalysts. Microporous Mesoporous Mater. 2023, 349, 112420.

    Article  CAS  Google Scholar 

  31. Gu, J.; Wu, Y. J.; Jin, Y. H.; Wang, J. Hydrothermal incorporation of Ce(La) ions into the framework of ZSM-5 by a multiple pH-adjusting co-hydrolysis. J. Porous Mater. 2013, 20, 7–13.

    Article  CAS  Google Scholar 

  32. Xu, Z. H.; Ye, K. H.; Zheng, Y. Y.; Liang, Z. T.; Tang, T. X.; Zhang, Y.; He, X. H.; Ji, H. B. Low cost and highly dispersed Ce/Na-ZSM-5 catalysts close to atomic dispersion for enhancing formaldehyde oxidation. Dalton Trans. 2023, 52, 5427–5432.

    Article  CAS  PubMed  Google Scholar 

  33. Meng, G.; Chang, Z. W.; Cui, X. Z.; Tian, H.; Ma, Z. H.; Peng, L. X.; Chen, Y. F.; Chen, C.; Shi, J. L. SnO2/CeO2 nanoparticle-decorated mesoporous ZSM-5 as bifunctional electrocatalyst for HOR and ORR. Chem. Eng. J. 2021, 417, 127913.

    Article  CAS  Google Scholar 

  34. Jaydev, S. D.; Martín, A. J.; Pérez-Ramírez, J. Direct conversion of polypropylene into liquid hydrocarbons on carbon-supported platinum catalysts. ChemSusChem 2021, 14, 5179–5185.

    Article  CAS  PubMed  Google Scholar 

  35. Sivasankar, N.; Vasudevan, S. Adsorption of n-hexane in Zeolite-5A: A temperature-programmed desorption and IR-spectroscopic study. J. Phys. Chem. B 2005, 109, 15417–15421.

    Article  CAS  PubMed  Google Scholar 

  36. Makowski, W.; Majda, D. Temperature programmed desorption of n-hexane and n-heptane from MFI and FAU zeolites. J. Porous Mater. 2007, 14, 27–35.

    Article  CAS  Google Scholar 

  37. Feng, C. Y.; Bo, T. T.; Maity, P.; Zuo, S. W.; Zhou, W.; Huang, K. W.; Mohammed, O. F.; Zhang, H. B. Regulating photocatalytic CO2 reduction kinetics through modification of surface coordination sphere. Adv. Funct. Mater., in press, https://doi.org/10.1022/adfm.202309761.

  38. Jia, Y. M.; Wang, J. W.; Zhang, K.; Feng, W.; Liu, S. B.; Ding, C. M.; Liu, P. Promoted effect of zinc-nickel bimetallic oxides supported on HZSM-5 catalysts in aromatization of methanol. J. Energy Chem. 2017, 26, 540–548.

    Article  Google Scholar 

  39. Fu, L. C.; Lin, H. P.; Zhu, L. K.; Wang, Q. H.; Luo, H.; Xiong, Q. G.; Vladimirovich, V. S.; Zhou, Y. F. Enhancing catalytic performance for waste plastic upgrading: Simultaneous regulation of pore structure and acid sites in Ga-doped desilicated HZSM-5 catalysts. J. Anal. Appl. Pyrol. 2023, 175, 106186.

    Article  CAS  Google Scholar 

  40. Phung, T. K.; Radikapratama, R.; Garbarino, G.; Lagazzo, A.; Riani, P.; Busca, G. Tuning of product selectivity in the conversion of ethanol to hydrocarbons over H-ZSM-5 based zeolite catalysts. Fuel Process. Technol. 2015, 137, 290–297.

    Article  CAS  Google Scholar 

  41. Emeis, C. A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial aid from the National Science and Technology Major Project of China (No. 2020YFE0204500), the National Natural Science Foundation of China (Nos. 22020102003, 22025506, and 22271274), and Program of Science and Technology Development Plan of Jilin Province of China (Nos. 20230101035JC and 20230101022JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangliang Zhang, Xiao Wang or Shuyan Song.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, X., Zhao, M. et al. High-efficiency Ce-modified ZSM-5 nanosheets for waste plastic upgrading. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6475-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6475-y

Keywords

Navigation