Skip to main content
Log in

Dual-filler reinforced PVDF-HFP based polymer electrolyte enabling high-safety design of lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Despite the high energy density of lithium metal batteries (LMBs), their application in rechargeable batteries is still hampered due to insufficient safety. Here, we present a novel flame-retardant solid-state electrolyte based on polyvinylidene fluoridehexafluoropropylene (PVDF-HFP) with nano SiO2 aerogel as an inert filler but Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as an auxiliary component to enhance the ion conductivity. The introduction of SiO2 aerogels imparts the polymer electrolyte with exceptional thermal stability and flame retardancy. Simultaneously, the interaction between hydroxyl groups of SiO2 particles and PVDF-HFP creates a strong cross-linking structure, enhancing the mechanical strength and stability of the electrolyte. Furthermore, the presence of SiO2 aerogel and LLZTO facilitates the dissociation of lithium salts through Lewis acid-base interactions, resulting in a high ionic conductivity of 1.01 × 103 S·cm1 and a wide electrochemical window of ∼ 5.0 V at room temperature for the prepared electrolytes. Remarkably, the assembled Li|Li cell demonstrates the excellent resistance to lithium dendrite and runs stablly for over 1500 h at a current density of 0.25 mA·cm−2. Thus, we prepare a pouch cell with high safety, which can work normally after short-circuiting under the external folding and cutting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul, D.; Wenqi, J.; Tanveer, A. Environmental stewardship: Analyzing the dynamic impact of renewable energy, foreign remittances, and globalization index on China’s CO2 emissions. Renew. Energy 2022, 201, 418–425.

    Article  CAS  Google Scholar 

  2. Jin, T.; Liu, M.; Su, K.; Lu, Y.; Cheng, G.; Liu, Y.; Li, N. W.; Yu, L. Polymer zwitterion-based artificial interphase layers for stable lithium metal anodes. ACS Appl. Mater. Interfaces 2021, 13, 57489–57496.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, L. Q.; Zhu, C. X.; Yu, S. C.; Ge, D. H.; Zhou, H. S. Status and challenges facing representative anode materials for rechargeable lithium batteries. J. Energy Chem. 2022, 66, 260–294.

    Article  CAS  Google Scholar 

  4. Lv, Z. S.; Li, W. L.; Yang, L.; Loh, X. J.; Chen, X. D. Custom-made electrochemical energy storage devices. ACS Energy Lett. 2019, 4, 606–614.

    Article  CAS  Google Scholar 

  5. Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

    Article  Google Scholar 

  6. Wei, T.; Zhou, Y. Y.; Sun, C.; Guo, X. T.; Xu, S. D.; Chen, D. F.; Tang, Y. F. An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities. Nano Res., in press, https://doi.org/10.1007/s12274-023-6187-8.

  7. Yin, Y. J.; Yang, Y. Y. C.; Cheng, D. Y.; Mayer, M.; Holoubek, J.; Li, W. K.; Raghavendran, G.; Liu, A.; Lu, B. Y.; Davies, D. M. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 2022, 7, 548–559.

    Article  ADS  CAS  Google Scholar 

  8. Huang, K. S.; Bi, S.; Kurt, B.; Xu, C. Y.; Wu, L. Y.; Li, Z. W.; Feng, G.; Zhang, X. G. Regulation of SEI formation by anion receptors to achieve ultra-stable lithium-metal batteries. Angew. Chem., Int. Ed. 2021, 60, 19232–19240.

    Article  CAS  Google Scholar 

  9. Lv, Q.; Song, Y. J.; Wang, B.; Wang, S. J.; Wu, B. C.; Jing, Y. T.; Ren, H. Z.; Yang, S. B.; Wang, L.; Xiao, L. H. et al. Bifunctional flame retardant solid-state electrolyte toward safe Li metal batteries. J. Energy Chem. 2023, 81, 613–622.

    Article  CAS  Google Scholar 

  10. Li, Y. H.; Li, Y.; Zhang, L. L.; Tao, H. C.; Li, Q. Y.; Zhang, J. J.; Yang, X. L. Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries. J. Energy Chem. 2023, 77, 123–136.

    Article  ADS  CAS  Google Scholar 

  11. Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Zhao, C.; Pan, Y.; Li, R. J.; Hu, A. J.; Zhou, B.; He, M.; Chen, J. H.; Yan, Z. F.; Fan, Y. N.; Chen, N. et al. A safe anode-free lithium metal pouch cell enabled by integrating stable quasi-solid electrolytes with oxygen-free cathodes. Chem. Eng. J. 2023, 463, 142386.

    Article  CAS  Google Scholar 

  13. Krishnan, V. G.; Rosely, C. V. S.; Leuteritz, A.; Gowd, E. B. High-strength, flexible, hydrophobic, sound-absorbing, and flame-retardant poly(vinyl alcohol)/polyelectrolyte complex aerogels. ACS Appl. Polym. Mater. 2022, 4, 5113–5124.

    Article  CAS  Google Scholar 

  14. Zhou, B. H.; Jo, Y. H.; Wang, R.; He, D.; Zhou, X. P.; Xie, X. L.; Xue, Z. G. Self-healing composite polymer electrolyte formed via supramolecular networks for high-performance lithium-ion batteries. J. Mater. Chem. A 2019, 7, 10354–10362.

    Article  CAS  Google Scholar 

  15. Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Hang, J. X.; Liu, P. B. MOF-derived multifunctional filler reinforced polymer electrolyte for solidstate lithium batteries. J. Energy Chem. 2021, 60, 259–271.

    Article  CAS  Google Scholar 

  16. Li, R. Y.; Hua, H. M.; Zeng, Y. J.; Yang, J.; Chen, Z. Q.; Zhang, P.; Zhao, J. B. Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. J. Energy Chem. 2022, 64, 395–403.

    Article  CAS  Google Scholar 

  17. Yao, M.; Ruan, Q. Q.; Yu, T. H.; Zhang, H. T.; Zhang, S. J. Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy Storage Mater. 2022, 44, 93–103.

    Article  Google Scholar 

  18. Yu, J.; Zhou, G. D.; Li, Y. Q.; Wang, Y. H.; Chen, D. J.; Ciucci, F. Improving room-temperature Li-metal battery performance by in situ creation of fast Li+ transport pathways in a polymer-ceramic electrolyte. Small 2023, 19, 2302691.

    Article  CAS  Google Scholar 

  19. Liu, W. Y.; Yi, C. J.; Li, L. P.; Liu, S. L.; Gui, Q. Y.; Ba, D. L.; Li, Y. Y.; Peng, D. L.; Liu, J. P. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem., Int. Ed. 2021, 60, 12931–12940.

    Article  CAS  Google Scholar 

  20. Xu, F. L.; Deng, S. G.; Guo, Q. Y.; Zhou, D.; Yao, X. Y. Quasi-Ionic liquid enabling single-phase poly(vinylidene fluoride)-based polymer electrolytes for solid-state LiNi0.6Co0.2Mn0.2O2∥Li batteries with rigid-flexible coupling interphase. Small Methods 2021, 5, 2100262.

    Article  CAS  Google Scholar 

  21. Zhang, J. M.; Zeng, Y. P.; Li, Q. P.; Tang, Z.; Sun, D.; Huang, D.; Zhao, L.; Tang, Y. G.; Wang, H. Y. Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater. 2023, 54, 440–449.

    Article  Google Scholar 

  22. Xu, Y. N.; Wang, K.; An, Y. B.; Liu, W. J.; Li, C.; Zheng, S. H.; Zhang, X.; Wang, L.; Sun, X. Z.; Ma, Y. W. Rapid ion transport induced by the enhanced interaction in composite polymer electrolyte for all-solid-state lithium-metal batteries. J. Phys. Chem. Lett. 2021, 12, 10603–10609.

    Article  CAS  PubMed  Google Scholar 

  23. Arya, A.; Sharma, A. L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–540.

    Article  CAS  Google Scholar 

  24. Yang, H. X.; Liu, Z. K.; Wang, Y.; Li, N. W.; Yu, L. Multiscale structural gel polymer electrolytes with fast Li+ transport for long-life Li metal batteries. Adv. Funct. Mater. 2023, 33, 2209837.

    Article  CAS  Google Scholar 

  25. Park, C. Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ion. 2003, 159, 111–119.

    Article  CAS  Google Scholar 

  26. Krawiec, W.; Scanlon, L. G.; Fellner, J. P.; Vaia, R. A.; Vasudevan, S.; Giannelis, E. P. Polymer nanocomposites: A new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J. Power Sources 1995, 54, 310–315.

    Article  ADS  CAS  Google Scholar 

  27. Shin, J. H.; Kim, K. W.; Ahn, H. J.; Ahn, J. H. Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-TinO2n1 composite polymer electrolytes for lithium/sulfur battery. Mater. Sci. Eng. B 2002, 95, 148–156.

    Article  Google Scholar 

  28. Zhang, T.; Li, J. F.; Li, X. X.; Wang, R. T.; Wang, C. X.; Zhang, Z. W.; Yin, L. W. A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv. Mater. 2022, 34, 2205575.

    Article  CAS  Google Scholar 

  29. Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res. 2023, 16, 5080–5086.

    Article  ADS  CAS  Google Scholar 

  30. Gu, Y. C.; Liu, H. Q. PVDF-HFP/LLZTO composite electrolytes with UV cure for solid-state lithium rechargeable batteries. J. Solid State Electrochem. 2023, 27, 2671–2679.

    Article  CAS  Google Scholar 

  31. Chen, S. J.; Zhao, Y. R.; Yang, J.; Yao, L. L.; Xu, X. X. Hybrid solid electrolytes with excellent electrochemical properties and their applications in all-solid-state cells. Ionics 2017, 23, 2603–2611.

    Article  CAS  Google Scholar 

  32. Zhao, C. Z.; Zhang, X. Q.; Cheng, X. B.; Zhang, R.; Xu, R.; Chen, P. Y.; Peng, H. J.; Huang, J. Q.; Zhang, Q. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. USA 2017, 114, 11069–11074.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.

    Article  ADS  CAS  Google Scholar 

  34. Li, X. L.; Yang, L.; Shao, D. S.; Luo, K. L.; Liu, L.; Wu, Z. Y.; Luo, Z. G.; Wang, X. Y. Preparation and application of poly(ethylene oxide)-based all solid-state electrolyte with a walnut-like SiO2 as nano-fillers. J. Appl. Polym. Sci. 2020, 137, 48810.

    Article  CAS  Google Scholar 

  35. Zhang, Y. B.; Feng, J. B.; Qin, J. D.; Zhong, Y. L.; Zhang, S. Q.; Wang, H.; Bell, J.; Guo, Z. P.; Song, P. A. Pathways to next-generation fire-safe alkali-ion batteries. Adv. Sci. 2023, 10, 2301056.

    Article  CAS  Google Scholar 

  36. Han, L. F.; Wang, L.; Chen, Z. H.; Kan, Y. C.; Hu, Y.; Zhang, H.; He, X. M. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: A review. Adv. Funct. Mater. 2023, 33, 2300892.

    Article  CAS  Google Scholar 

  37. Bi, L. N.; Wei, X. B.; Qiu, Y. H.; Song, Y. C.; Long, X.; Chen, Z.; Wang, S. Z.; Liao, J. X. A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries. Nano Res. 2023, 16, 1717–1725.

    Article  ADS  CAS  Google Scholar 

  38. Xue, S. D.; Chen, S. M.; Fu, Y. D.; Zhu, H. Y.; Ji, Y. C.; Song, Y. L.; Pan, F.; Yang, L. Y. Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes. Small 2023, 19, 2305326.

    Article  CAS  Google Scholar 

  39. Xu, Z.; Yang, T.; Chu, X.; Su, H.; Wang, Z. X.; Chen, N. J.; Gu, B. N.; Zhang, H. P.; Deng, W. L.; Zhang, H. T. et al. Strong lewis acid-base and weak hydrogen bond synergistically enhancing ionic conductivity of poly(ethylene oxide)@SiO2 electrolytes for a high rate capability Li-metal battery. ACS Appl. Mater. Interfaces 2020, 12, 10341–10349.

    Article  CAS  PubMed  Google Scholar 

  40. Hu, J.; Wang, W. H.; Zhu, X. J.; Liu, S. B.; Wang, Y. J.; Xu, Y. J.; Zhou, S. K.; He, X. C.; Xue, Z. G. Composite polymer electrolytes reinforced by hollow silica nanotubes for lithium metal batteries. J. Membr. Sci. 2021, 618, 118697

    Article  CAS  Google Scholar 

  41. Bae, J.; Li, Y. T.; Zhao, F.; Zhou, X. Y.; Ding, Y.; Yu, G. H. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater. 2018, 15, 46–52

    Article  Google Scholar 

  42. Lu, Z. Y.; Peng, L.; Rong, Y.; Wang, E. L.; Shi, R. H.; Yang, H. X.; Xu, Y. D.; Yang, R. Z.; Jin, C. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12498.

  43. Zhao, S. Y.; Siqueira, G.; Drdova, S.; Norris, D.; Ubert, C.; Bonnin, A.; Galmarini, S.; Ganobjak, M.; Pan, Z. Y.; Brunner, S. et al. Additive manufacturing of silica aerogels. Nature 2020, 584, 387–392.

    Article  CAS  PubMed  Google Scholar 

  44. Perea, A.; Dontigny, M.; Zaghib, K. Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte. J. Power Sources, 2017, 359, 182–185.

    Article  ADS  CAS  Google Scholar 

  45. Zheng, J.; Hu, Y. Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program Intergovernmental International Science and Technology Innovation Cooperation (No. 2022YFE0109400), Leading Edge Technology of Jiangsu Province (Nos. BK20202008 and BK20220009), and Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

We acknowledge the facilities in the Center for Microscopy and Analysis of Nanjing University of Aeronautics and Astronautics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Dou or Xiaogang Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, C., Huang, K., Zhao, J. et al. Dual-filler reinforced PVDF-HFP based polymer electrolyte enabling high-safety design of lithium metal batteries. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6502-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6502-z

Keywords

Navigation