Skip to main content
Log in

2D Ca/Nb-based perovskite oxide with Ta doping as highly efficient H2O2 synthesis catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Perovskite oxides (POs) are emerging as a class of highly efficient catalysts for reducing oxygen to H2O. Although a rich variety of POs-based catalysts have been developed by tuning the complex composition, a highly efficient PO catalyst that is able to alter the reaction pathway from a 4e process to a 2e process for H2O2 production has rarely been achieved. We modified the structure and composition of a Ca- and Nb-based PO material by realizing a uniform two-dimensional (2D) morphology and varied Ta doping, resulting in the 2D \({\rm{C}}{{\rm{a}}_2}{\rm{N}}{{\rm{b}}_{3 - x}}{\rm{T}}{{\rm{a}}_x}{{\rm{O}}_{10}}^ - \) (x = 0, 0.5, 1, and 1.5) monolayer catalysts. The obtained catalysts exhibit a dominant 2e pathway and show exceptional H2O2 production efficiency. The typical \({\rm{C}}{{\rm{a}}_2}{\rm{N}}{{\rm{b}}_{2.5}}{\rm{T}}{{\rm{a}}_{0.5}}{{\rm{O}}_{10}}^ - \) nanoflakes showed an onset potential of 0.735 V vs. reversible hydrogen electrode (RHE), a remarkably high selectivity over 95% across a wide range of 0.3–0.7 V, an impressively high Faradaic efficiency of 94%, and a notable H2O2 productivity of 1571 \({\rm{mmol}} \cdot {{\rm{g}}_{{\rm{cat}}}}^{ - 1} \cdot {{\rm{h}}^{ - 1}}\). These findings highlight the great potential of 2D perovskite oxide nanoflakes as advanced electrocatalysts for 2e oxygen reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brillas, E.; Sirés, I.; Oturan, M. A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631.

    Article  CAS  PubMed  Google Scholar 

  2. Hage, R.; Lienke, A. Applications of transition-metal catalysts to textile and wood-pulp bleaching. Angew. Chem., Int. Ed. 2005, 45, 206–222.

    Article  Google Scholar 

  3. Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Xu, X. H.; Gao, Y.; Yang, Q.; Liang, T.; Luo, B.; Kong, D. B.; Li, X. L.; Zhi, L. J.; Wang, B. Regulating the activity of intrinsic sites in covalent organic frameworks by introducing electro-withdrawing groups towards highly selective H2O2 electrosynthesis. Nano Today 2023, 49, 101792.

    Article  CAS  Google Scholar 

  5. Yi, Y. H.; Wang, L.; Li, G.; Guo, H. C. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method. Catal. Sci. Technol. 2016, 6, 1593–1610.

    Article  CAS  Google Scholar 

  6. Xu, S. S.; Gao, Y.; Liang, T.; Zhang, L. P.; Wang, B. N,O-coupling towards the selectively electrochemical production of H2O2. Chin. Chem. Lett. 2022, 33, 5152–5157.

    Article  CAS  Google Scholar 

  7. Dong, K.; Liang, J.; Wang, Y. Y.; Zhang, L. C.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Li, T. S.; Liu, Q.; Li, N. et al. Conductive two-dimensional magnesium metal-organic frameworks for high-efficiency O2 electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099.

    Article  CAS  Google Scholar 

  8. Wang, M. J.; Dong, X.; Meng, Z. D.; Hu, Z. W.; Lin, Y. G.; Peng, C. K.; Wang, H. S.; Pao, C. W.; Ding, S. Y.; Li, Y. Y. et al. An efficient interfacial synthesis of two-dimensional metal-organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2021, 60, 11190–11195.

    Article  CAS  Google Scholar 

  9. Zhang, C. Q.; Yuan, L.; Liu, C.; Li, Z. M.; Zou, Y. Y.; Zhang, X. C.; Zhang, Y.; Zhang, Z. Q.; Wei, G. F.; Yu, C. Z. Crystal engineering enables cobalt-based metal-organic frameworks as high-performance electrocatalysts for H2O2 production. J. Am. Chem. Soc. 2023, 145, 7791–7799.

    Article  CAS  PubMed  Google Scholar 

  10. Jung, E.; Shin, H.; Lee, B. H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K. S. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. 2020, 19, 436–442.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhang, B. W.; Zheng, T.; Wang, Y. X.; Du, Y.; Chu, S. Q.; Xia, Z. H.; Amal, R.; Dou, S. X.; Dai, L. M. Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Commun. Chem. 2022, 5, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong, H. S.; Wei, Z. X.; Gong, Z. C.; Liu, J. J.; Ye, G. L.; Yan, M. M.; Dong, J. C.; Allen, C.; Liu, J. B.; Huang, K. et al. Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 2022, 32, 2106886.

    Article  CAS  Google Scholar 

  13. Sheng, H. Y.; Hermes, E. D.; Yang, X. H.; Ying, D. W.; Janes, A. N.; Li, W. J.; Schmidt, J. R.; Jin, S. Electrocatalytic production of H2O2 by selective oxygen reduction using earth-abundant cobalt pyrite (CoS2). ACS Catal. 2019, 9, 8433–8442.

    Article  CAS  Google Scholar 

  14. Gao, R. J.; Pan, L.; Li, Z. W.; Shi, C. X.; Yao, Y. D.; Zhang, X. W.; Zou, J. J. Engineering facets and oxygen vacancies over hematite single crystal for intensified electrocatalytic H2O2 production. Adv. Funct. Mater. 2020, 30, 1910539.

    Article  CAS  Google Scholar 

  15. Liu, C.; Li, H.; Chen, J. S.; Yu, Z. X.; Ru, Q.; Li, S. Z.; Henkelman, G.; Wei, L.; Chen, Y. 3D transition-metal-mediated columbite nanocatalysts for decentralized electrosynthesis of hydrogen peroxide. Small 2021, 17, 2007249

    Article  CAS  Google Scholar 

  16. Tian, Y. H.; Li, M.; Wu, Z. Z.; Sun, Q.; Yuan, D.; Johannessen, B.; Xu, L.; Wang, Y.; Dou, Y. H.; Zhao, H. J. et al. Edge-hosted atomic Co-N4 Sites on hierarchical porous carbon for highly selective two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202213296.

    Article  CAS  Google Scholar 

  17. Lin, L. X.; Huang, L.; Wu, C.; Gao, Y.; Miao, N. H.; Wu, C.; Marshall, A. T.; Zhao, Y.; Wang, J. Z.; Chen, J. et al. Lattice distortion and H-passivation in pure carbon electrocatalysts for efficient and stable two-electron oxygen reduction to H2O2. Angew. Chem., Int. Ed. 2023, 62, e202315182.

    Article  CAS  Google Scholar 

  18. Peng, W.; Liu, J. X.; Liu, X. Q.; Wang, L. Q.; Yin, L. C.; Tan, H. T.; Hou, F.; Liang, J. Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production. Nat. Commun. 2023, 14, 4430.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan, M. M.; Wei, Z. X.; Gong, Z. C.; Johannessen, B.; Ye, G. L.; He, G. C.; Liu, J. J.; Zhao, S. L.; Cui, C. Y.; Fei, H. L. Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical architecture and high metal loading for H2O2 electrosynthesis. Nat. Commun. 2023, 14, 368.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, P. P.; Wang, F. X.; Yu, M. H.; Zhuang, X. D.; Feng, X. L. Two-dimensional materials for miniaturized energy storage devices: From individual devices to smart integrated systems. Chem. Soc. Rev. 2018, 47, 7426–7451.

    Article  CAS  PubMed  Google Scholar 

  21. Wei, Y. C.; Weng, Z.; Guo, L. C.; An, L.; Yin, J.; Sun, S. Y.; Da, P. F.; Wang, R.; Xi, P. X.; Yan, C. H. Activation strategies of perovskite-type structure for applications in oxygen-related electrocatalysts. Small Methods 2021, 5, 2100012.

    Article  CAS  Google Scholar 

  22. Zhang, M. F.; Jeerh, G.; Zou, P. M.; Lan, R.; Wang, M. T.; Wang, H. T.; Tao, S. W. Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Mater. Today 2021, 49, 351–377.

    Article  CAS  Google Scholar 

  23. Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

    Article  ADS  CAS  Google Scholar 

  24. Wang, K.; Han, C.; Shao, Z. P.; Qiu, J. S.; Wang, S. B.; Liu, S. M. Perovskite oxide catalysts for advanced oxidation reactions. Adv. Funct. Mater. 2021, 31, 2102089.

    Article  CAS  Google Scholar 

  25. Zhao, X. M.; Liu, T. R.; Loo, Y. L. Advancing 2D perovskites for efficient and stable solar cells: Challenges and opportunities. Adv. Mater. 2022, 34, 2105849.

    Article  CAS  Google Scholar 

  26. Even, J.; Pedesseau, L.; Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 2014, 118, 11566–11572.

    Article  CAS  Google Scholar 

  27. Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

    Article  CAS  Google Scholar 

  28. Suntivich, J.; Gasteiger, H. A.; Yabuuchi, N.; Nakanishi, H.; Goodenough, J. B.; Shao-Horn, Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat. Chem. 2011, 3, 546–550.

    Article  CAS  PubMed  Google Scholar 

  29. Beall, C. E.; Fabbri, E.; Schmidt, T. J. Perovskite oxide based electrodes for the oxygen reduction and evolution reactions: The underlying mechanism. ACS Catal. 2021, 11, 3094–3114.

    Article  CAS  Google Scholar 

  30. Wen, S. D.; Liu, B. W.; Li, W.; Liang, T.; Li, X. L.; Yi, D.; Luo, B.; Zhi, L. J.; Liu, D.; Wang, B. A battery process activated highly efficient carbon catalyst toward oxygen reduction by stabilizing lithium-oxygen bonding. Adv. Funct. Mater. 2022, 32, 2203960.

    Article  CAS  Google Scholar 

  31. Chen, D. J.; Chen, C.; Baiyee, Z. M.; Shao, Z. P.; Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 2015, 115, 9869–9921.

    Article  CAS  PubMed  Google Scholar 

  32. Xu, F. F.; Ebina, Y.; Bando, Y.; Sasaki, T. Structural characterization of (TBA, H)Ca2Nb3O10 nanosheets formed by delamination of a precursor-layered perovskite. J. Phys. Chem. B 2003, 107, 9638–9645.

    Article  CAS  Google Scholar 

  33. Ma, R. Z.; Sasaki, T. Nanosheets of oxides and hydroxides: Ultimate 2D charge-bearing functional crystallites. Adv. Mater. 2010, 22, 5082–5104.

    Article  CAS  PubMed  Google Scholar 

  34. Li, H. H.; Liu, B. W.; Yang, X. C.; Gao, Y.; Luo, X.; Guan, X. Y.; Zhang, Z.; Yu, Z. L.; Wang, B. Liquid phase exfoliation of indium selenide: Achieving the optimum exfoliating parameters and unraveling the mechanism. Prog. Nat. Sci.: Mater. Int. 2022, 32, 700–704.

    Article  CAS  Google Scholar 

  35. Maeda, K.; Eguchi, M.; Oshima, T. Perovskite oxide nanosheets with tunable band-edge potentials and high photocatalytic hydrogen-evolution activity. Angew. Chem., Int. Ed. 2014, 53, 13164–13168.

    Article  CAS  Google Scholar 

  36. Ida, S.; Takashiba, A.; Koga, S.; Hagiwara, H.; Ishihara, T. Potential gradient and photocatalytic activity of an ultrathin p-n junction surface prepared with two-dimensional semiconducting nanocrystals. J. Am. Chem. Soc. 2014, 136, 1872–1878.

    Article  CAS  PubMed  Google Scholar 

  37. Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210–228.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, Y.; Li, S. Y.; Li, Z. L.; Liu, H.; Liu, X. Y.; Chen, J. X.; Fang, X. S. High-performance two-dimensional perovskite Ca2Nb3O10 UV photodetectors. Nano Lett. 2021, 21, 382–388.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Liu, X. Y.; Li, S. Y.; Li, Z. Q.; Zhang, Y.; Yang, W.; Li, Z. L.; Liu, H.; Shtansky, D. V.; Fang, X. S. Boosted responsivity and tunable spectral response in B-site substituted 2D Ca2Nb3−xTaxO10 perovskite photodetectors. Adv. Funct. Mater. 2021, 31, 2101480.

    Article  CAS  Google Scholar 

  40. Zhang, G.; Liu, G.; Wang, L. Z.; Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951–5984.

    Article  CAS  PubMed  Google Scholar 

  41. Sun, Y.; Liu, Z. Y.; Zhang, W.; Chu, X. F.; Cong, Y. G.; Huang, K. K.; Feng, S. H. Unfolding B–O–B bonds for an enhanced ORR performance in ABO3-type perovskites. Small 2019, 15, 1803513.

    Article  Google Scholar 

  42. Zhao, Q.; Zhu, D.; Zhou, X.; Li, S. H.; Sun, X. Y.; Cui, J.; Fan, Z.; Guo, M. J.; Zhao, J.; Teng, B. T. et al. Conductive one-dimensional coordination polymers with tunable selectivity for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2021, 13, 52960–52966.

    Article  CAS  PubMed  Google Scholar 

  43. Hong, W. T.; Risch, M.; Stoerzinger, K. A.; Grimaud, A.; Suntivich, J.; Shao-Horn, Y. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 2015, 8, 1404–1427.

    Article  CAS  Google Scholar 

  44. Li, Z. Q.; Chen, Y.; Zhu, P. F.; Ji, N. J.; Duan, X. L.; Jiang, H. D. Electronic structure and properties of RbTiOPO4: Ta crystals. RSC Adv. 2017, 7, 53111–53116.

    Article  ADS  CAS  Google Scholar 

  45. Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12, 237–268.

    Article  CAS  Google Scholar 

  46. Xu, P. T.; Milstein, T. J.; Mallouk, T. E. Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11539–11547.

    Article  CAS  PubMed  Google Scholar 

  47. Okamoto, Y.; Ida, S.; Hyodo, J.; Hagiwara, H.; Ishihara, T. Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading. J. Am. Chem. Soc. 2021, 133, 18034–18037.

    Article  Google Scholar 

  48. Li, M. R.; Zhao, M. W.; Li, F.; Zhou, W.; Peterson, V. K.; Xu, X. Y.; Shao, Z. P.; Gentle, I.; Zhu, Z. H. A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nat. Commun. 2017, 8, 13990.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, B. T.; Zhang, L.; Zhen, D. X.; Yoo, S.; Ding, Y.; Chen, D. C.; Chen, Y.; Zhang, Q. B.; Doyle, B.; Xiong, X. H. et al. A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat. Commun. 2017, 8, 14586.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Qian, J. N.; Liu, W.; Jiang, Y. T.; Mu, Y. B.; Cai, Y. Y.; Shi, L.; Zeng, L. Enhanced catalytic performance in two-electron oxygen reduction reaction via ZnSnO3 perovskite. ACS Sustain. Chem. Eng. 2022, 10, 14351–14360.

    Article  CAS  Google Scholar 

  51. Han, L.; Sun, Y. Y.; Li, S.; Cheng, C.; Halbig, C. E.; Feicht, P.; Hübner, J. L.; Strasser, P.; Eigler, S. In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 2019, 9, 1283–1288.

    Article  CAS  Google Scholar 

  52. Jiang, H.; Wang, Y. A.; Hu, J.; Shai, X.; Zhang, C. X.; Le, T.; Zhang, L. B.; Shao, M. H. Phase regulation of WO3 for highly selective oxygen reduction to hydrogen peroxide. Chem. Eng. J. 2023, 452, 139449.

    Article  CAS  Google Scholar 

  53. Wang, N.; Zhao, X. H.; Zhang, R.; Yu, S.; Levell, Z. H.; Wang, C. Y.; Ma, S. B.; Zou, P. C.; Han, L. L.; Qin, J. Y. et al. Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal. 2022, 12, 4156–4164.

    Article  CAS  Google Scholar 

  54. Chakthranont, P.; Nitrathorn, S.; Thongratkaew, S.; Khemthong, P.; Nakajima, H.; Supruangnet, R.; Butburee, T.; Sano, N.; Faungnawakij, K. Rational design of metal-free doped carbon nanohorn catalysts for efficient electrosynthesis of H2O2 from O2 reduction. ACS Appl. Energy Mater. 2021, 4, 12436–12447.

    Article  CAS  Google Scholar 

  55. Fan, M. M.; Wang, Z. M.; Sun, K.; Wang, A.; Zhao, Y. Y.; Yuan, Q. X.; Wang, R. B.; Raj, J.; Wu, J. J.; Jiang, J. C. et al. N-B-OH site-activated graphene quantum dots for boosting electrochemical hydrogen peroxide production. Adv. Mater. 2023, 35, 2209086.

    Article  CAS  Google Scholar 

  56. Zhang, C. Q.; Lu, R. H.; Liu, C.; Lu, J. Y.; Zou, Y. Y.; Yuan, L.; Wang, J.; Wang, G. Z.; Zhao, Y.; Yu, C. Z. Trimetallic sulfide hollow superstructures with engineered d-band center for oxygen reduction to hydrogen peroxide in alkaline solution. Adv. Sci. 2022, 9, 2104768.

    Article  CAS  Google Scholar 

  57. Zhang, F. F.; Zhu, Y. L.; Tang, C.; Chen, Y.; Qian, B. B.; Hu, Z. W.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A. et al. High-efficiency electrosynthesis of hydrogen peroxide from oxygen reduction enabled by a tungsten single atom catalyst with unique terdentate N1O2 coordination. Adv. Funct. Mater. 2022, 32, 2110224.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Key Research and development Program of China (Nos. 2022YFF0712200 and 2021YFA1202802), the Young Elite Scientists Sponsorship Program by BAST (No. BYESS2023410), the visiting scholars fund support from State Key Lab of Silicon Materials, Zhejiang University (No. SKL2022-04), and the CAS Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Liang or Bin Wang.

Electronic Supplementary Material

12274_2024_6496_MOESM1_ESM.pdf

Electronic Supplementary Material: 2D Ca/Nb-based perovskite oxide with Ta doping as highly efficient H2O2 synthesis catalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Gao, Y., Xu, X. et al. 2D Ca/Nb-based perovskite oxide with Ta doping as highly efficient H2O2 synthesis catalyst. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6496-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6496-6

Keywords

Navigation