Skip to main content
Log in

Constant light and pinealectomy disrupt daily rhythm in song production and negatively impact reproductive performance in zebra finches

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We assessed the circadian clock control of singing and reproductive performance in zebra finches. Experiment 1 examined changes in body mass, testis size, and plasma corticosterone and testosterone levels in male birds exposed to constant light (LL, 100 lx) and constant darkness (DD, 0.5 lx), with controls on 12L:12D (L = 100 lx, D = 0.5 lx). There was a significant increase in the body mass and testis size under LL and a decrease in testis size under the DD. Using a similar design, experiment 2 assessed the persistence of the circadian rhythm in singing along with activity–rest pattern in cohort I birds that were entrained to 12L:12D and subsequently released in DD or LL, and in cohort II birds that were entrained to 12L:12D and following pinealectomy were released in DD. Both activity and singing patterns were synchronized with the light phase under 12L:12D, free-ran with a circadian period under DD, and were arrhythmic under the LL. There was an overall decreased and increased effect on singing under DD and LL, respectively, albeit with differences in various song parameters. The pinealectomy disrupted both activity and singing rhythms but did not affect singing or the overall song features. Pinealectomized bird pairs also exhibited a significant reduction in their nest-building and breeding efforts, resulting in a compromised reproductive performance. These results suggest a circadian clock control of singing and more importantly demonstrate a role of the pineal clock in breeding behaviors, leading to a compromised reproductive performance in diurnal zebra finches.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Foster, R. G., & Kreitzman, L. (2014). The rhythms of life: What your body clock means to you! Experimental Physiology, 99(4), 599–606. https://doi.org/10.1113/expphysiol.2012.071118

    Article  PubMed  Google Scholar 

  2. Kumar, V., Wingfield, J. C., Dawson, A., Ramenofsky, M., Rani, S., & Bartell, P. (2010). Biological clocks and regulation of seasonal reproduction and migration in birds. Physiological and Biochemical Zoology, 83, 827–835. https://doi.org/10.1086/652243

    Article  PubMed  Google Scholar 

  3. Pittendrigh, C. S. (1993). Temporal organization: Reflections of a Darwinian clock-watcher. Annual Review of Physiology, 55(1), 17–54. https://doi.org/10.1146/annurev.ph.55.030193.000313

    Article  Google Scholar 

  4. Aschoff, J. (1981). Freerunning and entrained circadian rhythms. Biological rhythms. Springer. https://doi.org/10.1007/978-1-4615-6552-9_6

    Book  Google Scholar 

  5. Avey, M. T., Quince, A. F., & Sturdy, C. B. (2008). Seasonal and diurnal patterns of black-capped chickadee (Poecile atricapillus) vocal production. Behavioural Processes, 77(2), 149–155. https://doi.org/10.1016/j.beproc.2007.12.004

    Article  PubMed  Google Scholar 

  6. Catchpole, C. K., & Slater, P. J. B. (2008). Bird song: Biological themes and variations. Cambridge University Press. https://doi.org/10.1017/CBO9780511754791

    Article  Google Scholar 

  7. Derégnaucourt, S., Saar, S., & Gahr, M. (2012). Melatonin affects the temporal pattern of vocal signatures in birds. Journal of Pineal Research, 53(3), 245–258. https://doi.org/10.1111/j.1600-079X.2012.00993.x

    Article  CAS  PubMed  Google Scholar 

  8. Leitner, S., Voigt, C., & Gahr, M. (2001). Seasonal changes in the song pattern of the non-domesticated island canary (Serinus canaria), a field study. Behaviour, 138(7), 885–904. https://doi.org/10.1163/156853901753172700

    Article  Google Scholar 

  9. Cassone, V. M., & Westneat, D. F. (2012). The bird of time: Cognition and the avian biological clock. Frontiers in Molecular Neuroscience, 5, 32. https://doi.org/10.3389/fnmol.2012.00032

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jansen, R., Metzdorf, R., van der Roest, M., Fusani, L., ter Maat, A., & Gahr, M. (2005). Melatonin affects the temporal organization of the song of the zebra finch. The FASEB Journal, 19(7), 848–850. https://doi.org/10.1096/fj.04-2874fje

    Article  CAS  PubMed  Google Scholar 

  11. Jha, N. A., & Kumar, V. (2017). Female conspecifics restore rhythmic singing behaviour in arrhythmic male zebra finches. Journal of Biosciences, 42(1), 139–147. https://doi.org/10.1007/s12038-017-9664-y

    Article  PubMed  Google Scholar 

  12. Wang, G., Harpole, C. E., Trivedi, A. K., & Cassone, V. M. (2012). Circadian regulation of bird song, call, and locomotor behavior by pineal melatonin in the zebra finch. Journal of Biological Rhythms, 27(2), 145–155. https://doi.org/10.1177/0748730411435965

    Article  PubMed  Google Scholar 

  13. Kumar, V., Singh, B. P., & Rani, S. (2004). The bird clock: A complex, multi-oscillatory and highly diversified system. Biological Rhythm Research, 35(1–2), 121–144. https://doi.org/10.1080/09291010412331313287

    Article  Google Scholar 

  14. Kumar, V., & Singh, B. (2005). The timekeeping system in birds. Proceedings of the Indian National Science Academy B, 71(5/6), 267.

    CAS  Google Scholar 

  15. Gwinner, E., Hau, M., & Heigl, S. (1997). Melatonin: Generation and modulation of avian circadian rhythms. Brain Research Bulletin, 44(4), 439–444. https://doi.org/10.1016/s0361-9230(97)00224-4

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, V. (2001). Melatonin and circadian rhythmicity in birds. In A. Dawson & C. M. Chaturvedi (Eds.), Avian endocrinology (pp. 93–112). Narosa Publ.

    Google Scholar 

  17. Kumar, V., Singh, S., Misra, M., Malik, S., & Rani, S. (2002). Role of melatonin in photoperiodic time measurement in the migratory redheaded bunting (Emberiza bruniceps) and the nonmigratory Indian weaver bird (Ploceus philippinus). Journal of Experimental Zoology, 292, 277–286. https://doi.org/10.1002/jez.10079

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, V., & Gwinner, E. (2005). Pinealectomy shortens resynchronisation times of house sparrow (Passer domesticus) circadian rhythms. Naturwissenschaften, 92, 419–422. https://doi.org/10.1007/s00114-005-0009-6

    Article  CAS  PubMed  Google Scholar 

  19. Rani, S., Malik, S., Trivedi, A. K., Singh, S., & Kumar, V. (2006). A circadian clock regulates migratory restlessness in the blackheaded bunting, Emberiza melanocephala. Current Science, 91, 1093–1096.

    Google Scholar 

  20. Trivedi, A. K., Malik, S., Rani, S., & Kumar, V. (2016). Pinealectomy abolishes circadian behavior and interferes with circadian clock gene oscillations in brain and liver but not retina in a migratory songbird. Physiology & Behavior, 156, 156–163. https://doi.org/10.1016/j.physbeh.2016.01.019

    Article  CAS  Google Scholar 

  21. Singh, J., Rani, S., & Kumar, V. (2012). Functional similarity in relation to the external environment between circadian behavioral and melatonin rhythms in the subtropical Indian weaver bird. Hormones and Behavior, 61, 527–534. https://doi.org/10.1016/j.yhbeh.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  22. Nordeen, K. W., & Nordeen, E. J. (1992). Auditory feedback is necessary for the maintenance of stereotyped song in adult zebra finches. Behavioral and Neural Biology, 57(1), 58–66. https://doi.org/10.1016/0163-1047(92)90757-u

    Article  CAS  PubMed  Google Scholar 

  23. Scharff, C., & Nottebohm, F. (1991). A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: Implications for vocal learning. Journal of Neuroscience, 11(9), 2896–2913. https://doi.org/10.1523/jneurosci.11-09-02896.1991

    Article  CAS  PubMed  Google Scholar 

  24. Williams, H. (2004). Birdsong and singing behavior. Annals of the New York Academy of Sciences, 1016(1), 1–30. https://doi.org/10.1196/annals.1298.029

    Article  PubMed  Google Scholar 

  25. Ollason, J. C., & Slater, P. J. (1973). Changes in the behaviour of the male zebra finch during a 12-hr day. Animal Behaviour, 21(1), 191–196. https://doi.org/10.1016/S0003-3472(73)80059-4

    Article  CAS  PubMed  Google Scholar 

  26. Kumar, V., Gwinner, E., & Van’t Hof, T. (2000). Circadian rhythms of melatonin in European starlings exposed to different lighting conditions: Relationship with locomotor and feeding rhythms. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 186(2), 205–215. https://doi.org/10.1007/s003590050020

    Article  CAS  PubMed  Google Scholar 

  27. Jha, N. A., & Kumar, V. (2017). Effect of no-night light environment on behaviour, learning performance and personality in zebra finches. Animal Behaviour, 132, 29–47. https://doi.org/10.1016/j.anbehav.2017.07.017

    Article  Google Scholar 

  28. Prabhat, A., Malik, I., Jha, N. A., Bhardwaj, S. K., & Kumar, V. (2020). Developmental effects of constant light on circadian behaviour and gene expressions in zebra finches: Insights in mechanisms of metabolic adaptation to aperiodic environment in diurnal animals. Journal of Photochemistry and Photobiology, B: Biology, 211, 111995. https://doi.org/10.1016/j.jphotobiol.2020.111995

    Article  CAS  PubMed  Google Scholar 

  29. Rani, S., Singh, S., Malik, S., Singh, J., & Kumar, V. (2009). Synchronization of Indian weaver bird circadian rhythms to food and light zeitgebers: Role of pineal. Chronobiology International, 26(4), 653–665. https://doi.org/10.1080/07420520902926009

    Article  PubMed  Google Scholar 

  30. Wada, H., Salvante, K. G., Stables, C., Wagner, E., Williams, T. D., & Breuner, C. W. (2008). Adrenocortical responses in zebra finches (Taeniopygia guttata): Individual variation, repeatability, and relationship to phenotypic quality. Hormones and Behavior, 53, 472–480. https://doi.org/10.1016/j.yhbeh.2007.11.018

    Article  CAS  PubMed  Google Scholar 

  31. Mishra, I., & Kumar, V. (2019). The quantity–quality trade-off: Differential effects of daily food availability times on reproductive performance and offspring quality in diurnal zebra finches. Journal of Experimental Biology, 222, jeb196667. https://doi.org/10.1242/jeb.196667

    Article  PubMed  Google Scholar 

  32. Jha, N. A., Taufique, S. T., & Kumar, V. (2021). Born without night: The consequence of the no-night environment on reproductive performance in diurnal zebra finches. Journal of Experimental Biology, 224(24), jeb242996. https://doi.org/10.1242/jeb.242996

    Article  PubMed  Google Scholar 

  33. Lynn, S. E., Perfito, N., Guardado, D., & Bentley, G. E. (2015). Food, stress, and circulating testosterone: Cue integration by the testes, not the brain, in male zebra finches (Taeniopygia guttata). General and Comparative Endocrinology, 215, 1–9. https://doi.org/10.1016/j.ygcen.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  34. Taufique, S. T., Prabhat, A., & Kumar, V. (2018). Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids. European Journal of Neuroscience, 48, 3005–3018. https://doi.org/10.1111/ejn.14157

    Article  PubMed  Google Scholar 

  35. Singh, J., Rani, S., & Kumar, V. (2010). Presence of a conspecific renders survival advantages in the migratory redheaded bunting: Test through the effects of restricted feeding on circadian response and survivorship. Chronobiology International, 27, 111–127. https://doi.org/10.3109/07420520903399680

    Article  PubMed  Google Scholar 

  36. Saar, S., & Mitra, P. P. (2008). A technique for characterizing the development of rhythms in bird song. PLoS ONE, 3, e1461. https://doi.org/10.1371/journal.pone.0001461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zann, R. A. (1996). The zebra finch: A synthesis of field and laboratory studies. Oxford University Press.

    Book  Google Scholar 

  38. Williams, H., & Mehta, N. (1999). Changes in adult zebra finch song require a forebrain nucleus that is not necessary for song production. Journal of Neurobiology, 39, 14–28. https://doi.org/10.1002/(SICI)1097-4695(199904)39:1%3C14::AID-NEU2%3E3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  39. Bentley, G. E., Spar, B. D., MacDougall-Shackleton, S. A., Hahn, T. P., & Ball, G. F. (2000). Photoperiodic regulation of the reproductive axis in male zebra finches, Taeniopygia guttata. General and Comparative Endocrinology, 117(3), 449–455. https://doi.org/10.1006/gcen.1999.7430

    Article  CAS  PubMed  Google Scholar 

  40. Batra, T., Malik, I., & Kumar, V. (2019). Illuminated night alters behaviour and negatively affects physiology and metabolism in diurnal zebra finches. Environmental Pollution, 254, 112916. https://doi.org/10.1016/j.envpol.2019.07.084

    Article  CAS  PubMed  Google Scholar 

  41. Batra, T., Malik, I., Prabhat, A., Bhardwaj, S. K., & Kumar, V. (2020). Sleep in unnatural times: Illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches. Proceedings of the Royal Society B, 287, 20192952. https://doi.org/10.1098/rspb.2019.2952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ball, G. F., Riters, L. V., & Balthazart, J. (2002). Neuroendocrinology of song behavior and avian brain plasticity: Multiple sites of action of sex steroid hormones. Frontiers in Neuroendocrinology, 23(2), 137–178. https://doi.org/10.1006/frne.2002.023

    Article  CAS  PubMed  Google Scholar 

  43. Bernard, D. J., Bentley, G. E., Balthazart, J., Turek, F. W., & Ball, G. F. (1999). Androgen receptor, estrogen receptor α, and estrogen receptor β show distinct patterns of expression in forebrain song control nuclei of European starlings. Endocrinology, 140(10), 4633–4643. https://doi.org/10.1210/endo.140.10.7024

    Article  CAS  PubMed  Google Scholar 

  44. Goymann, W., & Wingfield, J. C. (2014). Male-to-female testosterone ratios, dimorphism, and life history—What does it really tell us? Behavioral Ecology, 25(4), 685–699. https://doi.org/10.1093/beheco/aru019

    Article  Google Scholar 

  45. Riters, L. V. (2012). The role of motivation and reward neural systems in vocal communication in songbirds. Frontiers in Neuroendocrinology, 33(2), 194–209. https://doi.org/10.1016/j.yfrne.2012.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  46. Najar, N., & Benedict, L. (2019). The relationship between latitude, migration and the evolution of bird song complexity. Ibis, 161(1), 1–12. https://doi.org/10.1111/ibi.12648

    Article  Google Scholar 

  47. Johnson, F., Soderstrom, K., & Whitney, O. (2002). Quantifying song bout production during zebra finch sensory-motor learning suggests a sensitive period for vocal practice. Behavioural Brain Research, 131(1–2), 57–65. https://doi.org/10.1016/s0166-4328(01)00374-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rashotte, M. E., Sedunova, E. V., Johnson, F., & Pastukhov, I. F. (2001). Influence of food and water availability on undirected singing and energetic status in adult male zebra finches (Taeniopygia guttata). Physiology & Behavior, 74(4–5), 533–541. https://doi.org/10.1016/s0031-9384(01)00600-x

    Article  CAS  Google Scholar 

  49. Feng, N. Y., & Bass, A. H. (2016). “Singing” fish rely on circadian rhythm and melatonin for the timing of nocturnal courtship vocalization. Current Biology, 26(19), 2681–2689. https://doi.org/10.1016/j.cub.2016.07.079

    Article  CAS  PubMed  Google Scholar 

  50. Merilä, J., & Sorjonen, J. (1994). Seasonal and diurnal patterns of singing and song-flight activity in bluethroats (Luscinia svecica). The Auk, 111, 556–562. https://doi.org/10.1093/auk/111.3.556

    Article  Google Scholar 

  51. Amrhein, V., Kunc, H. P., Naguib, M., & Nelson, D. (2004). Seasonal patterns of singing activity vary with time of day in the nightingale (Luscinia megarhynchos). The Auk, 121(1), 110–117. https://doi.org/10.1093/auk/121.1.110

    Article  Google Scholar 

  52. Binkley, S., Kluth, E., & Menaker, M. (1971). Pineal function in sparrows: Circadian rhythms and body temperature. Science, 174(4006), 311–314. https://doi.org/10.1126/science.174.4006.311

    Article  CAS  PubMed  Google Scholar 

  53. Gaston, S., & Menaker, M. (1968). Pineal function: The biological clock in the sparrow? Science, 160(3832), 1125–1127. https://doi.org/10.1126/science.174.4006.311

    Article  CAS  PubMed  Google Scholar 

  54. Bentley, G. E., & Ball, G. F. (2000). Photoperiod-dependent and -independent regulation of melatonin receptors in the forebrain of songbirds. Journal of Neuroendocrinology, 12(8), 745–752. https://doi.org/10.1046/j.1365-2826.2000.00523.x

    Article  CAS  PubMed  Google Scholar 

  55. Gahr, M., & Kosar, E. (1996). Identification, distribution, and developmental changes of a melatonin binding site in the song control system of the zebra finch. The Journal of Comparative Neurology, 367(2), 308–318. https://doi.org/10.1002/(sici)1096-9861(19960401)367:2%3C308::aid-cne11%3E3.0.co;2-m

    Article  CAS  PubMed  Google Scholar 

  56. Whitfield-Rucker, M. G., & Cassone, V. M. (1996). Melatonin binding in the house sparrow song control system: Sexual dimorphism and the effect of photoperiod. Hormones and Behavior, 30(4), 528–537. https://doi.org/10.1006/hbeh.1996.0056

    Article  CAS  PubMed  Google Scholar 

  57. Kumar, V. (1996). Melatonin: A master hormone and a candidate for universal panacea. Indian Journal of Experimental Biology, 34, 391–402.

    CAS  PubMed  Google Scholar 

  58. Cassone, V. M. (2014). Avian circadian organization: A chorus of clocks. Frontiers in Neuroendocrinology, 35(1), 76–88. https://doi.org/10.1016/j.yfrne.2013.10.002

    Article  PubMed  Google Scholar 

Download references

Funding

Research grants to VK (EMR/2015/002158) from the Science and Engineering Research Board, New Delhi, supported the experiments. During manuscript preparation, VK was supported by a UGC-BSR faculty fellowship award (# F.No.26-13/2020(BSR). Currently, VK is supported by an INSA Senior Scientist (INSA/SP/SS/2023).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision: VK; funding: VK; investigation, methodology, data curation, and analysis: NAJ, SKT, and VK; visualization and writing: NAJ and VK; reviewing and editing of manuscript drafts: VK and NAJ; final version: VK and NAJ; and revision: NAJ and VK. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Vinod Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflicting interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, N.A., Taufique, S.K.T. & Kumar, V. Constant light and pinealectomy disrupt daily rhythm in song production and negatively impact reproductive performance in zebra finches. Photochem Photobiol Sci 23, 731–746 (2024). https://doi.org/10.1007/s43630-024-00548-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-024-00548-z

Keywords

Navigation