Skip to main content
Log in

Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Simultaneous conversion of CO2 and biomass into value-added chemicals through solar-driven catalysis holds tremendous importance for fostering a sustainable circular economy. Herein, plasmonic Bi quantum dots were immobilized on phosphoric acid modified attapulgite (P-ATP) nanorod using an in-situ reduction–deposition method, and were employed for photocatalytic reduction of CO2 coupled with oxidation of biomass-derived benzyl alcohol. Results revealed that Bi atoms successfully integrated into the basal structure of P-ATP, forming chemically coordinated Bi–O–Si bonds that served as efficient transportation channels for electrons. The incorporation of high-density monodispersed Bi quantum dots induced a surface plasmon resonance (SPR) effect, expanding the light absorption range into the near-infrared region. As a consequence, the photo-thermal transformation was significantly accelerated, leading to enhanced reaction kinetics. Notably, 50% Bi/P-ATP nanocomposite exhibited the highest plasmon-mediated photocatalytic CH4 generation (115.7 µmol·g−1·h−1) and CO generation (44.9 µmol·g−1·h−1), along with remarkable benzaldehyde generation rate of 79.5 µmol·g−1·h−1 in the photo-redox coupling system under solar light irradiation. The hydrogen protons released from the oxidation of benzyl alcohol facilitated the incorporation of more hydrogen protons into CO2 to form key CH3O intermediates. This work demonstrates the synergistic solar-driven valorization of CO2 and biomass using natural mineral based catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shao, S. X.; Cui, C. Q.; Tang, Z. Y.; Li, G. D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Res. 2022, 15, 10110–10133.

    Article  ADS  CAS  Google Scholar 

  2. Samanta, S.; Srivastava, R. Catalytic conversion of CO2 to chemicals and fuels: The collective thermocatalytic/photocatalytic/electrocatalytic approach with graphitic carbon nitride. Mater. Adv. 2020, 1, 1506–1545.

    Article  CAS  Google Scholar 

  3. Gu, H. L.; Wu, J.; Zhang, L. M. Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction. Nano Res. 2022, 15, 9747–9763.

    Article  ADS  CAS  Google Scholar 

  4. Li, T.; Huang, H. W.; Wang, S. B.; Mi, Y.; Zhang, Y. H. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Res. 2023, 16, 8542–8569.

    Article  ADS  CAS  Google Scholar 

  5. Lam, E.; Reisner, E. A TiO2-Co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas. Angew. Chem., Int. Ed. 2021, 60, 23306–23312.

    Article  CAS  Google Scholar 

  6. Liu, Z. D.; Ma, J. L.; Guo, Y. Z.; Hong, M.; Sun, R. C. Photocatalytic CO2 reduction integrated with biomass selective oxidation via single-atom Ru and P dual sites on carbon nitride. Appl. Catal. B Environ. 2024, 342, 123429.

    Article  CAS  Google Scholar 

  7. Liu, Z. D.; Zhang, J. Q.; Li, X. Z.; Cui, R.; Ma, J. L.; Sun, R. C. Simultaneous photocatalytic biomass conversion and CO2 reduction over high crystalline oxygen-doped carbon nitride. iScience 2023, 26, 107416.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ling, W. K.; Ma, J. L.; Liu, Z. D.; Cui, R.; Zhang, J. Q.; Li, X. Z.; Hong, M.; Sun, R. C. Enhancing biomass oxidation with carbon nitride nanosheets ring inserted on C. I. Pigment yellow 53 photocatalysts for simultaneous CO and lactic acid production. Chem. Eng. J. 2023, 475, 146117.

    Article  CAS  Google Scholar 

  9. Liu, Z. D.; Ma, J. L.; Hong, M.; Sun, R. C. Potassium and sulfur dual sites on highly crystalline carbon nitride for photocatalytic biorefinery and CO2 reduction. ACS Catal. 2023, 13, 2106–2117.

    Article  CAS  Google Scholar 

  10. Li, C.; Li, J.; Qin, L.; Yang, P. P.; Vlachos, D. G. Recent advances in the photocatalytic conversion of biomass-derived furanic compounds. ACS Catal. 2021, 11, 11336–11359.

    Article  CAS  Google Scholar 

  11. Wang, Z. Q.; Yang, Z. Q.; Fang, R. M.; Yan, Y. F.; Ran, J. Y.; Zhang, L. A state-of-the-art review on action mechanism of photothermal catalytic reduction of CO2 in full solar spectrum. Chem. Eng. J. 2022, 429, 1385–8947.

    Article  Google Scholar 

  12. Ramakrishnan, S. B.; Mohammadparast, F.; Dadgar, A. P.; Mou, T.; Le, T. E.; Wang, B.; Jain, P. K.; Andiappan, M. Photoinduced electron and energy transfer pathways and photocatalytic mechanisms in hybrid plasmonic photocatalysis. Adv. Opt. Mater. 2021, 9, 01128.

    Article  Google Scholar 

  13. Li, J.; Lou, Z. Z.; Li, B. J. Engineering plasmonic semiconductors for enhanced photocatalysis. J. Mater. Chem. A 2021, 9, 18818–18835.

    Article  CAS  Google Scholar 

  14. Verma, R.; Belgamwar, R.; Polshettiwar, V. Plasmonic photocatalysis for CO2 conversion to chemicals and fuels. ACS Mater. Lett. 2021, 3, 574–598.

    Article  CAS  Google Scholar 

  15. Guo, R. X.; Wang, G.; Liu, W. S. Clever use of natural clay materials in the synthesis of non-symmetric carbonates by utilizing CO2 as a feedstock: Ag/attapulgite nano-catalyst. Dalton Trans. 2020, 49, 10232–10239.

    Article  PubMed  CAS  Google Scholar 

  16. Lu, Y. S.; Wang, A. Q. From structure evolution of palygorskite to functional material: A review. Microporous Mesoporous Mater. 2022, 333, 111765.

    Article  CAS  Google Scholar 

  17. Liu, Y. H.; Zhang, C. Y.; Shi, A. Q.; Zuo, S. X.; Yao, C.; Ni, C. Y.; Li, X. Z. Full solar spectrum driven CO2 conversion over S-scheme natural mineral nanocomposite enhanced by LSPR effect. Powder Technol. 2022, 396, 615–625.

    Article  CAS  Google Scholar 

  18. Cao, G. B.; Ye, X. H.; Duan, S. J.; Cao, Z. W.; Zhang, C. Y.; Yao, C.; Li, X. Z. Plasmon enhanced Sn: In2O3/attapulgite S-scheme heterojunction for efficient photothermal reduction of CO2. Colloids Surf. A: Physicochem. Eng. Aspects 2023, 656, 130398.

    Article  CAS  Google Scholar 

  19. Wang, Z. Y.; Yan, S.; Sun, Y. J.; Xiong, T.; Dong, F.; Zhang, W. Bi metal sphere/graphene oxide nanohybrids with enhanced direct plasmonic photocatalysis. Appl. Catal. B: Environ. 2017, 214, 148–157.

    Article  CAS  Google Scholar 

  20. Ni, Z. L.; Zhang, W. D.; Jiang, G. M.; Wang, X. P.; Lu, Z. Z.; Sun, Y. J.; Li, X. W.; Zhang, Y. X.; Dong, F. Enhanced plasmonic photocatalysis by SiO2@Bi microspheres with hot-electron transportation channels via Bi–O–Si linkages. Chin. J. Catal. 2017, 38, 1174–1183.

    Article  CAS  Google Scholar 

  21. Xu, F. X.; Wang, J. G.; Zhang, N. C.; Liang, H.; Sun, H. H. Simultaneously generating Bi quantum dot and oxygen vacancy on Bi2MoO6 nanosheets for boosting photocatalytic selective alcohol oxidation. Appl. Surf. Sci. 2022, 575, 151738.

    Article  CAS  Google Scholar 

  22. Zhao, X. Y.; Li, J.; Kong, X. G.; Li, C. C.; Lin, B.; Dong, F.; Yang, G. D.; Shao, G. S.; Xue, C. Carbon dots mediated in situ confined growth of Bi clusters on g-C3N4 nanomeshes for boosting plasma-assisted photoreduction of CO2. Small 2022, 18, 2204154.

    Article  CAS  Google Scholar 

  23. Li, X. Z.; Wang, Z. D.; Shi, H. Y.; Dai, D.; Zuo, S. X.; Yao, C.; Ni, C. Y. Full spectrum driven SCR removal of NO over hierarchical CeVO4/attapulgite nanocomposite with high resistance to SO2 and H2O. J. Hazard. Mater. 2020, 386, 121977.

    Article  PubMed  CAS  Google Scholar 

  24. Beura, R.; Thangadurai, P. Effect of Sn doping in ZnO on the photocatalytic activity of ZnO-graphene nanocomposite with improved activity. J. Environ. Chem. Eng. 2018, 6, 5087–5100.

    Article  CAS  Google Scholar 

  25. Yu, Z. Z.; Yang, K.; Yu, C. L.; Lu, K. Q.; Huang, W. Y.; Xu, L.; Zou, L. X.; Wang, S. B.; Chen, Z.; Hu, J. et al. Steering unit cell dipole and internal electric field by highly dispersed Er atoms embedded into NiO for efficient CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2111999.

    Article  CAS  Google Scholar 

  26. Liu, L.; Deng, X. Y.; Liao, Y.; Xiao, D. T.; Wang, M. Activated carbon/attapulgite composites for radon adsorption. Mater. Lett. 2021, 285, 129177.

    Article  CAS  Google Scholar 

  27. Wang, Y. S.; Wang, C. S.; Chen, M. Q.; Tang, Z. Y.; Yang, Z. L.; Hu, J. X.; Zhang, H. Hydrogen production from steam reforming ethanol over Ni/attapulgite catalysts—Part I: Effect of nickel content. Fuel Process. Technol. 2019, 192, 227–238.

    Article  CAS  Google Scholar 

  28. Kang, C.; Gao, L. W.; Zhu, H.; Lang, C. Y.; Jiang, J. L.; Wei, J. Adsorption of Hg(II) in solution by mercaptofunctionalized palygorskite. Environ. Sci. Pollut. Res. 2021, 28, 66287–66302.

    Article  CAS  Google Scholar 

  29. Dong, F.; Xiong, T.; Sun, Y. J.; Zhao, Z. W.; Zhou, Y.; Feng, X.; Wu, Z. B. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014, 50, 10386–10389.

    Article  CAS  Google Scholar 

  30. Liu, Y. H.; Chu, X. L., Shi, A. Q., Yao, C., Ni, C.Y., Li, X. Z. Construction of 2D bismuth silicate heterojunctions from natural mineral toward cost-effective photocatalytic reduction of CO2. Ind. Eng. Chem. Res. 2022, 61, 12294–12306.

    Article  CAS  Google Scholar 

  31. Liu, Y. H.; Li, X. Z.; Su, H.; Chen, X. F.; Zuo, S. X.; Qian, J. C.; Yao, C. Plasmonic W18O49/attapulgite nanocomposite with enhanced photofixation of nitrogen under full-spectrum light. J. Mater. Sci.: Mater. Electron. 2019, 30, 20019–20028.

    CAS  Google Scholar 

  32. Jing, L. Q.; Xie, M.; Xu, Y. G.; Tong, C.; Zhao, H.; Zhong, N.; Li, H. M.; Gates, I. D.; Hu, J. G. Multifunctional 3D MoSx/Zn3In2S6 nanoflower for selective photothermal-catalytic biomass oxidative and non-selective organic pollutants degradation. Appl. Catal. B: Environ. 2022, 318, 121814.

    Article  CAS  Google Scholar 

  33. Yan, X. Q.; Zhu, X. H.; Li, R. H.; Chen, W. X. Au/BiOCl heterojunction within mesoporous silica shell as stable plasmonic photocatalyst for efficient organic pollutants decomposition under visible light. J. Hazard. Mater. 2016, 303, 1–9.

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Wu, Y. Z.; Yue, X. Y.; Fan, J. J.; Hao, X. M.; Xiang, Q. J. In situ fabrication of plasmonic Bi/CsPbBr3 composite photocatalyst toward enhanced photocatalytic CO2 reduction. Appl. Surf. Sci. 2023, 609, 155391.

    Article  CAS  Google Scholar 

  35. Zhong, M. H.; Li, X. Z.; Chu, X. N.; Gui, H. G.; Zuo, S. X.; Yao, C.; Li, Z. Y.; Chen, Y. S. Solar driven catalytic conversion of cellulose biomass into lactic acid over copper reconstructed natural mineral. Appl. Catal. B: Environ. 2022, 317, 121718.

    Article  CAS  Google Scholar 

  36. Li, X. Z.; Shi, H. Y.; Zuo, S. X.; Gao, B. Y.; Han, C. Y.; Wang, T. S.; Yao, C.; Ni, C. Y. Lattice reconstruction of one-dimensional mineral to achieve dendritic heterojunction for cost-effective nitrogen photofixation. Chem. Eng. J. 2021, 414, 128797.

    Article  CAS  Google Scholar 

  37. Sun, L. G.; Ye, X. H.; Cao, Z. W.; Zhang, C. Y.; Yao, C.; Ni, C. Y.; Li, X. Z. Upconversion enhanced photocatalytic conversion of lignin biomass into valuable product over CeVO4/palygorskite nanocomposite: Effect of Gd3+ inoripraatinn. Appl. Catal. A: General 2022, 648, 118923.

    Article  CAS  Google Scholar 

  38. Estrada-Pomares, J.; Ramos-Terron, S.; Lasarte-Aragonés, G.; Lucena, R.; Cárdenas, S.; Rodríguez-Padrón, D.; Luque, R.; De Miguel G. Mechanochemically designed bismuth-based halide perovskites for efficient photocatalytic oxidation of vanillyl alcohol. J. Mater. Chem. A 2022, 10, 11298–11305.

    Article  CAS  Google Scholar 

  39. Shi, Y.; Li, J. Z.; Huang, D.; Wang, X. W.; Huang, Y. P.; Chen, C. C.; Li, R. P. Specific adsorption and efficient degradation of cylindrospermopsin on oxygen-vacancy sites of BiOBr. ACS Catal. 2023, 13, 445–458.

    Article  CAS  Google Scholar 

  40. Wang, Q.; Zhang, M.; Chen, C. C.; Ma, W. H.; Zhao, J. C. Photocatalytic aerobic oxidation of alcohols on TiO2: The acceleration effect of a Bronsted acid. Angew. Chem., Int. Ed. 2010, 49, 7976–7979.

    Article  CAS  Google Scholar 

  41. Tang, Z. L.; He, W. J.; Wang, Y. L.; Wei, Y. C.; Yu, X. L.; Xiong, J.; Wang, X.; Zhang, X.; Zhao, Z.; Liu, J. Ternary heterojunction in rGO-coated Ag/Cu2O catalysts for boosting selective photocatalytic CO2 reduction into CH4. Appl. Catal. B: Environ. 2022, 311, 121371.

    Article  CAS  Google Scholar 

  42. He, W. J.; Wei, Y. C.; Xiong, J.; Tang, Z. L.; Song, W. Y.; Liu, J.; Zhao, Z. Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts. Chem. Eng. J. 2022, 433, 133540.

    Article  CAS  Google Scholar 

  43. Rahimi, F. A.; Dey, S.; Verma, P.; Maji, T. K. Photocatalytic CO2 reduction based on a Re(I)-integrated conjugated microporous polymer: Role of a sacrificial electron donor in product selectivity and efficiency. ACS Catal. 2023, 13, 5969–5978.

    Article  CAS  Google Scholar 

  44. Zhang, M. M.; Wang, C. H.; Wang, Y. Y.; Li, S. M.; Zhang, X. T.; Liu, Y. C. Tunable bismuth doping/loading endows NaTaO3 nanosheet highly selective photothermal reduction of CO2. Nano Res. 2022, 16, 2142–2151.

    Article  ADS  Google Scholar 

  45. He, W. J.; Li, J. Y.; Hou, X. F.; Chen, P.; Wang, H.; Dong, X. A.; Dong, F.; Sun, Y. J. Light- induced secondary hydroxyl defects in Sr1−xSn(OH)6 enable sustained and efficient photocatalytic toluene mineralization. Chem. Eng. J. 2022, 427, 131764.

    Article  CAS  Google Scholar 

  46. Dong, X.; Cui, W.; Wang, H.; Li, J. Y.; Sun, Y. J.; Wang, H. Q.; Zhang, Y. X.; Huang, H. W.; Dong, F. Promoting ring-opening efficiency for suppressing toxic intermediates during photocatalytic toluene degradation via surface oxygen vacancies. Sci. Bull. 2019, 64, 669–678.

    Article  CAS  Google Scholar 

  47. Sheng, Z. Y.; Ma, D. R.; He, Q.; Wu, K.; Yang, L. Mechanism of photocatalytic toluene oxidation with ZnWO4: A combined experimental and theoretical investigation. Catal. Sci. Technol. 2019, 9, 5692–5697.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51674043), Jiangsu High Institutions Key Basic Research Projects of Natural Science (No. 21KJA430002), Changzhou International Cooperation Project (No. CZ20230018), and International Joint Laboratory of the Jiangsu Education Department. We thank the Analysis and Testing Center of Changzhou University for the characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinjuan Chen, Yongsheng Chen or Xiazhang Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, G., Xing, H., Gui, H. et al. Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6521-9

Keywords

Navigation