Skip to main content
Log in

Polar solvent induced in-situ self-assembly and oxygen vacancies on Bi2MoO6 for enhanced photocatalytic degradation of tetracycline

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

It has been proved to be an effective route to efficiently ameliorate photocatalytic performance of catalysts via designing three-dimensional (3D) hierarchical nanostructures and constructing oxygen vacancies (VOs). However, controlling the self-assembly of organization into 3D hierarchical nanostructures while introducing VOs in photocatalysts remains a challenge. Herein, we reported an ethylene glycol (EG) mediated approach to craft 3D hydrangea-structure Bi2MoO6 with VOs for efficient photocatalytic degradation of tetracycline. Through manipulating the EG concentration during the fabrication process, the influence of EG concentration on the Bi2MoO6 structure was systematically investigated. EG could promote the self-assembly of Bi2MoO6 nanosheets to form a 3D hierarchical structure. Compared with 2D nanoplates, 3D hierarchical architecture enhanced the surface area and the amount of active sites of Bi2MoO6. In addition, the reduction effect of EG on metallic oxide enabled the generation of VOs in Bi2MoO6. The VOs adjusted the electronic structure of Bi2MoO6, which not only enhanced the light harvesting, but also facilitated the simultaneous utilization of photo-induced electrons and holes to form reactive oxygen species (·O2− and ·OH) for the efficient tetracycline decomposition. 3D Bi2MoO6 hydrangea with VOs achieved a 79.4% removal efficiency of tetracycline after 75 min. This work provides a simple yet robust EG-mediated strategy, which not only promotes the self-assembly of nano-catalysts into 3D hierarchical architectures, but also crafts tunable VOs for highly efficient photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  PubMed  Google Scholar 

  2. Xing, Z. P.; Zhang, J. Q.; Cui, J. Y.; Yin, J. W.; Zhao, T. Y.; Kuang, J. Y.; Xiu, Z.; Wan, N.; Zhou, W. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B: Environ. 2018, 225, 452–467.

    Article  CAS  Google Scholar 

  3. Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z. H.; Guest, J. R.; Ren, Y. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968.

    Article  ADS  CAS  Google Scholar 

  4. Hu, Y.; Li, X. B.; Wang, W. W.; Deng, F.; Han, L.; Gao, X. M.; Feng, Z. J.; Chen, Z.; Huang, J. T.; Zeng, F. Y. et al. Bi and S codoping g-C3N4 to enhance internal electric field for robust photocatalytic degradation and H2 production. Chin. J. Struct. Chem. 2022, 41, 2206069–2206078.

    CAS  Google Scholar 

  5. Shen, H. D.; Zhan, X. Y.; Hong, S.; Xu, L.; Yang, C. M.; Robertson, A. W.; Hao, L. D.; Fu, F.; Sun, Z. Y. Ultrafine MoOx clusters anchored on g-C3N4 with nitrogen/oxygen dual defects for synergistic efficient O2 activation and tetracycline photodegradation. Nano Res. 2023, 16, 10713–10723.

    Article  ADS  CAS  Google Scholar 

  6. Meng, Q. Q.; Lv, C. D.; Sun, J. X.; Hong, W. Z.; Xing, W. N.; Qiang, L. S.; Chen, G.; Jin, X. L. High-efficiency Fe-mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Appl. Catal. B: Environ. 2019, 256, 117781.

    Article  Google Scholar 

  7. Xiong, J.; Song, P.; Di, J.; Li, H. M.; Liu, Z. Freestanding ultrathin bismuth-based materials for diversified photocatalytic applications. J. Mater. Chem. A 2019, 7, 25203–25226.

    Article  CAS  Google Scholar 

  8. Xu, M.; Yang, J. K.; Sun, C. Y.; Liu, L.; Cui, Y.; Liang, B. Performance enhancement strategies of Bi-based photocatalysts: A review on recent progress. Chem. Eng. J. 2020, 389, 124402.

    Article  CAS  Google Scholar 

  9. Qin, K. N.; Zhao, Q. L.; Yu, H.; Xia, X. H.; Li, J. J.; He, S. F.; Wei, L. L.; An, T. C. A review of bismuth-based photocatalysts for antibiotic degradation: Insight into the photocatalytic degradation performance, pathways and relevant mechanisms. Environ. Res. 2021, 199, 111360.

    Article  CAS  PubMed  Google Scholar 

  10. Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L. et al. Atomically-thin Bi2MoO6 nanosheets with vacancy pairs for improved photocatalytic CO2 reduction. Nano Energy 2019, 61, 54–59.

    Article  CAS  Google Scholar 

  11. Arif, M.; Zhang, M.; Qiu, B.; Yao, J. C.; Bu, Q. X.; Ali, A.; Muhmood, T.; Hussian, I.; Liu, X. H.; Zhou, B. J. et al. Synergistic effect of ultrathin thickness and surface oxygen vacancies in high-efficiency Ti-mediated Bi2MoO6 for immense photocatalytic nitrofurantoin degradation and Cr(VI) reduction. Appl. Surf. Sci. 2021, 543, 148816.

    Article  CAS  Google Scholar 

  12. Kongmark, C.; Coulter, R.; Cristol, S.; Rubbens, A.; Pirovano, C.; Löfberg, A.; Sankar, G.; Van Beek, W.; Bordes-Richard, E.; Vannier, R. N. A comprehensive scenario of the crystal growth of γ-Bi2MoO6 catalyst during hydrothermal synthesis. Cryst. Growth Des. 2012, 12, 5994–6003.

    Article  CAS  Google Scholar 

  13. Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

    Article  Google Scholar 

  14. Li, H. D.; Li, W. J.; Gu, S. N.; Wang, F. Z.; Liu, X. T.; Ren, C. J. Forming oxygen vacancies inside in lutetium-doped Bi2MoO6 nanosheets for enhanced visible-light photocatalytic activity. Mol. Catal. 2017, 433, 301–312.

    Article  CAS  Google Scholar 

  15. Meng, Q. Q.; Zhou, Y. S.; Chen, G.; Hu, Y. D.; Lv, C. D.; Qiang, L. S.; Xing, W. N. Integrating both homojunction and heterojunction in QDs self-decorated Bi2MoO6/BCN composites to achieve an efficient photocatalyst for Cr(VI) reduction. Chem. Eng. J. 2018, 334, 334–343.

    Article  CAS  Google Scholar 

  16. Zhang, L. W.; Xu, T. G.; Zhao, X.; Zhu, Y. F. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B: Environ. 2010, 98, 138–146.

    Article  CAS  Google Scholar 

  17. Han, B.; Ou, X. W.; Deng, Z. Q.; Song, Y.; Tian, C.; Deng, H.; Xu, Y. J.; Lin, Z. Nickel metal-organic framework monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angew. Chem., Int. Ed. 2018, 57, 16811–16815.

    Article  CAS  Google Scholar 

  18. Dai, Z.; Qin, F.; Zhao, H. P.; Ding, J.; Liu, Y. L.; Chen, R. Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal. 2016, 6, 3180–3192.

    Article  CAS  Google Scholar 

  19. Khatun, S.; Shimizu, K.; Singha, S.; Saha, R.; Watanabe, S.; Roy, P. Defect enriched hierarchical iron promoted Bi2MoO6 hollow spheres as efficient electrocatalyst for water oxidation. Chem. Eng. J. 2021, 426, 131884.

    Article  CAS  Google Scholar 

  20. Song, H.; Ou, X. W.; Han, B.; Deng, H. Y.; Zhang, W. C.; Tian, C.; Cai, C. F.; Lu, A. H.; Lin, Z.; Chai, L. Y. An overlooked natural hydrogen evolution pathway: Ni2+ boosting H2O reduction by Fe(OH)2 oxidation during low-temperature serpentinization. Angew. Chem., Int. Ed. 2021, 60, 24054–24058.

    Article  CAS  Google Scholar 

  21. Wu, X. L.; Ng, Y. H.; Wen, X. M.; Chung, H. Y.; Wong, R. J.; Du, Y.; Dou, S. X.; Amal, R.; Scott, J. Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem. Eng. J. 2018, 353, 636–644.

    Article  CAS  Google Scholar 

  22. Liu, Y.; Kong, X. D.; Guo, X.; Li, Q. Y.; Ke, J. W.; Wang, R. Y.; Li, Q. X.; Geng, Z. G.; Zeng, J. Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies. ACS Catal. 2020, 10, 1077–1085.

    Article  CAS  Google Scholar 

  23. Yan, X. D.; Zhao, H. M.; Li, T. F.; Zhang, W.; Liu, Q. L.; Yuan, Y.; Huang, L. J.; Yao, L. L.; Yao, J. H.; Su, H. L. et al. In situ synthesis of BiOCl nanosheets on three-dimensional hierarchical structures for efficient photocatalysis under visible light. Nanoscale 2019, 11, 10203–10208

    Article  CAS  PubMed  Google Scholar 

  24. Zhan, W. W.; Yuan, Y. S.; Sun, L. M.; Yuan, Y. Y.; Han, X. G.; Zhao, Y. L. Hierarchical NiO@N-doped carbon microspheres with ultrathin nanosheet subunits as excellent photocatalysts for hydrogen evolution. Small 2019, 15, 1901024.

    Article  Google Scholar 

  25. Mu, F. H.; Cai, Q.; Hu, H.; Wang, J.; Wang, Y.; Zhou, S. J.; Kong, Y. Construction of 3D hierarchical microarchitectures of Z-scheme UiO-66-(COOH)2/ZnIn2S4 hybrid decorated with non-noble MoS2 cocatalyst: A highly efficient photocatalyst for hydrogen evolution and Cr(VI) reduction. Chem. Eng. J. 2020, 384, 123352.

    Article  CAS  Google Scholar 

  26. Fan, H. T.; Wu, Z.; Liu, K. C.; Liu, W. S. Fabrication of 3D CuS@ZnIn2S4 hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 433, 134474.

    Article  CAS  Google Scholar 

  27. Yao, S.; Liu, J. W.; Liu, F. Y.; Wang, B.; Ding, Y.; Li, L.; Liu, C.; Huang, F.; Fang, J. Y.; Lin, Z. et al. Robust route to photocatalytic nitrogen fixation mediated by capitalizing on defect-tailored InVO4 nanosheets. Environ. Sci. Nano 2022, 9, 1996–2005.

    Article  CAS  Google Scholar 

  28. Liu, B. Y.; Wang, X.; Zhang, Y. J.; Xu, L. C.; Wang, T. S.; Xiao, X.; Wang, S. C.; Wang, L. Z.; Huang, W. A BiVO4 photoanode with a VOx layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2023, 62, e202217346.

    Article  CAS  Google Scholar 

  29. Wu, Z.; Wang, M. Y.; Bai, Y.; Song, H.; Lv, J. X.; Mo, X. F.; Li, X. Q.; Lin, Z. Upcycling of nickel iron slags to hierarchical self-assembled flower-like photocatalysts for highly efficient degradation of high-concentration tetracycline. Chem. Eng. J. 2023, 464, 142532.

    Article  CAS  Google Scholar 

  30. Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.

    Article  CAS  PubMed  Google Scholar 

  31. Nakanishi, T. Supramolecular Soft Matter: Applications in Materials and Organic Electronics; John Wiley & Sons: Hoboken, 2011.

    Book  Google Scholar 

  32. Wang, B.; Liu, J. W.; Yao, S.; Liu, F. Y.; Li, Y. K.; He, J. Q.; Lin, Z.; Huang, F.; Liu, C.; Wang, M. Y. Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. J. Mater. Chem. A 2021, 9, 17143–17172.

    Article  CAS  Google Scholar 

  33. Wang, P. L.; Li, X. Y.; Fan, S. Y.; Yin, Z. F.; Wang, L.; Tadé, M. O.; Liu, S. M. Piezotronic effect and oxygen vacancies boosted photocatalysis C-N coupling of benzylamine. Nano Energy 2021, 83, 105831.

    Article  CAS  Google Scholar 

  34. Huang, Q. L.; Zhao, P. Z.; Lv, L.; Zhang, W. M.; Pan, B. C. Redox-induced in situ growth of MnO2 with rich oxygen vacancies over monolithic copper foam for boosting toluene combustion. Environ. Sci. Technol. 2023, 57, 9096–9104.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Zheng, Y. F.; Fu, K. X.; Yu, Z. H.; Su, Y.; Han, R.; Liu, Q. L. Oxygen vacancies in a catalyst for VOCs oxidation: Synthesis, characterization, and catalytic effects. J. Mater. Chem. A 2022, 10, 14171–14186.

    Article  CAS  Google Scholar 

  36. Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 2006, 18, 2426–2431.

    Article  CAS  Google Scholar 

  37. Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. 2005, 117, 4465–4469.

    Article  ADS  Google Scholar 

  38. Zhu, L. P.; Zhang, W. D.; Xiao, H. M.; Yang, Y.; Fu, S. Y. Facile synthesis of metallic Co hierarchical nanostructured microspheres by a simple solvothermal process. J. Phys. Chem. C 2008, 112, 10073–10078.

    Article  CAS  Google Scholar 

  39. Yang, G.; Zhu, Y. A.; Liang, Y. J.; Yang, J.; Wang, K.; Zeng, Z. K.; Xu, R.; Xie, X. J. Crystal defect-mediated {010} facets of Bi2MoO6 nanosheets for removal of TC: Enhanced mechanism and degradation pathway. Appl. Surf. Sci. 2021, 539, 148038.

    Article  CAS  Google Scholar 

  40. Yang, Z. X.; Shen, M.; Dai, K.; Zhang, X. H.; Chen, H. Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2018, 430, 505–514.

    Article  ADS  CAS  Google Scholar 

  41. Hua, Z. L.; Wang, X. M.; Xiao, P.; Shi, J. L. Solvent effect on microstructure of yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis. J. Eur. Cera. Soc. 2006, 26, 2257–2264.

    Article  CAS  Google Scholar 

  42. Shang, M.; Wang, W. Z.; Xu, H. L. New Bi2WO6 nanocages with high visible-light-driven photocatalytic activities prepared in refluxing EG. Cryst. Growth Des. 2009, 9, 991–996.

    Article  CAS  Google Scholar 

  43. Yu, D. B.; Sun, X. Q.; Zou, J. W.; Wang, Z. R.; Wang, F.; Tang, K. Oriented assembly of Fe3O4 nanoparticles into monodisperse hollow single-crystal microspheres. J. Phys. Chem. B 2006, 110, 21667–21671.

    Article  CAS  PubMed  Google Scholar 

  44. Xu, X.; Ding, X.; Yang, X. L.; Wang, P.; Li, S.; Lu, Z. X.; Chen, H. Oxygen vacancy boosted photocatalytic decomposition of ciprofloxacin over Bi2MoO6: Oxygen vacancy engineering, biotoxicity evaluation and mechanism study. J. Hazard. Mater. 2019, 364, 691–699.

    Article  CAS  PubMed  Google Scholar 

  45. Yang, L. X.; Guo, J. W.; Zhang, J.; Zhang, S. Q.; Dai, W. L.; Xiao, X.; Luo, X. B.; Luo, S. L. Utter degradation of toluene with inhibiting the generation of benzene by self-supporting Bi2MoO6 nanoflakes featuring OV-enriched interface. Chem. Eng. J. 2022, 427, 131550.

    Article  CAS  Google Scholar 

  46. Maczka, M.; Paraguassu, W.; Souza Filho, A. G.; Freire, P. T. C.; Mendes Filho, J.; Hanuza, J. Phonon-instability-driven phase transitions in ferroelectric Bi2WO6:Eu3+: High-pressure Raman and photoluminescence studies. Phys. Rev. B 2008, 77, 094137.

    Article  ADS  Google Scholar 

  47. Li, L. J.; Sun, F. J. Application of infrared spectrometry to the study of metal oxide nanomaterials. Mater. Rev. 2006, 20, 92–94.

    Google Scholar 

  48. Dai, W. L.; Long, J. F.; Yang, L. X.; Zhang, S. Q.; Xu, Y.; Luo, X. B.; Zou, J. P.; Luo, S. L. Oxygen migration triggering molybdenum exposure in oxygen vacancy-rich ultra-thin Bi2MoO6 nanoflakes: Dual binding sites governing selective CO2 reduction into liquid hydrocarbons. J. Energy Chem. 2021, 61, 281–289.

    Article  CAS  Google Scholar 

  49. Yang, X. L.; Wang, S. Y.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H. et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B: Environ. 2019, 259, 118088.

    Article  CAS  Google Scholar 

  50. Hu, J. S.; Li, J.; Cui, J. F.; An, W. J.; Liu, L.; Liang, Y. H.; Cui, W. Q. Surface oxygen vacancies enriched FeOOH/Bi2MoO6 photocatalysis-Fenton synergy degradation of organic pollutants. J. Hazard. Mater. 2020, 384, 121399.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, J. H.; Hu, Y.; Qin, J. X.; Yang, Z. X.; Fu, M. L. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem. Eng. J. 2020, 385, 123814.

    Article  CAS  Google Scholar 

  52. Gao, S.; Gu, B. C.; Jiao, X. C.; Sun, Y. F.; Zu, X. L.; Yang, F.; Zhu, W. G.; Wang, C. M.; Feng, Z. M.; Ye, B. J. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 2017, 139, 3438–3445.

    Article  CAS  PubMed  Google Scholar 

  53. Guan, Z. L.; Li, X. M.; Wu, Y.; Chen, Z.; Huang, X. D.; Wang, D. B.; Yang, Q.; Liu, J. L.; Tian, S. H.; Chen, X. Y. et al. AgBr nanoparticles decorated 2D/2D GO/Bi2WO6 photocatalyst with enhanced photocatalytic performance for the removal of tetracycline hydrochloride. Chem. Eng. J. 2021, 410, 128283.

    Article  CAS  Google Scholar 

  54. Yang, Y.; Zeng, G. M.; Huang, D. L.; Zhang, C.; He, D. H.; Zhou, C. Y.; Wang, W. J.; Xiong, W. P.; Song, B.; Yi, H. et al. In situ grown single-atom cobalt on polymeric carbon nitride with bidentate ligand for efficient photocatalytic degradation of refractory antibiotics. Small, 2020, 16, 2001634

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledges the financial support by the National Key Research and Development Program of China (No. 2021YFB3600701) and the National Natural Science Foundation of China (Nos. 61922090, 22022602, and U23B20166).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Wang or Mengye Wang.

Electronic Supplementary Material

12274_2024_6498_MOESM1_ESM.pdf

Polar solvent induced in-situ self-assembly and oxygen vacancies on Bi2MoO6 for enhanced photocatalytic degradation of tetracycline

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Su, D., Liu, W. et al. Polar solvent induced in-situ self-assembly and oxygen vacancies on Bi2MoO6 for enhanced photocatalytic degradation of tetracycline. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6498-4

Keywords

Navigation