Skip to main content
Log in

Bifunctional noble-metal-free cocatalyst coating enabling better coupling of photocatalytic CO2 reduction and H2O oxidation on direct Z-scheme heterojunction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Selective loading of spatially separated redox cocatalysts on direct Z-scheme heterojunctions holds great promise for advancing the efficiency of artificial photosynthesis, which however is limited to the photodeposition of noble metal cocatalysts and the fabrication of hollow double-shelled semiconductor heterojunctions. Moreover, the co-exposure of discrete cocatalyst and semiconductor increases the product diversity when both the exposed sites of which participate in CO2 photoreduction. Herein, we present a facile and versatile protocol to overcome these limitations via surface coating of Z-scheme heterojunctions with bifunctional noble-metal-free cocatalysts. With Cu2O/Fe2O3 (CF) as a model heterojunction and layered Ni(OH)2 as a model cocatalyst, it is found that Ni(OH)2 lying on the surfaces of Cu2O and Fe2O3 separately co-catalyzes the CO2 reduction and H2O oxidation. Thorough experimental and theoretical investigation reveals that the Ni(OH)2 outer layer: (i) mitigates the charge recombination in CF and balances their transfer and consumption; (ii) reduces the rate-determining barriers for CO2-to-CO and H2O-to-O2 conversion, (iii) suppresses the side proton reduction occurring on CF, and (iv) protects the CF from component detachment. As expected, the redox reactions stoichiometrically proceed, and significantly enhanced photocatalytic activity, selectivity, and stability in CO generation are achieved by the stacked Cu2O/Fe2O3@Ni(OH)2 in contrast to CF. This study demonstrates the significance of the synergy between bifunctional cocatalysts and Z-scheme heterojunctions for improving the efficacy of overall redox reactions, opening a fresh avenue for the rational design of artificial photosynthetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yoshino, S.; Takayama, T.; Yamaguchi, Y.; Iwase, A.; Kudo, A. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis. Acc. Chem. Res. 2022, 55, 966–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin, H. W.; Luo, S. Q.; Zhang, H. B.; Ye, J. H. Toward solar-driven carbon recycling. Joule 2022, 6, 294–314.

    Article  CAS  Google Scholar 

  3. Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Two-dimensiona—related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chem. Soc. Rev. 2019, 48, 1972–2010.

    Article  CAS  PubMed  Google Scholar 

  4. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

    Article  CAS  Google Scholar 

  5. Yuan, L.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Coupling strategy for CO2 valorization integrated with organic synthesis by heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2021, 60, 21150–21172.

    Article  CAS  Google Scholar 

  6. Zhang, F.; Li, Y. H.; Qi, M. Y.; Yamada, Y. M. A.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Photothermal catalytic CO2 reduction over nanomaterials. Chem Catal. 2021, 1, 272–297.

    Article  CAS  Google Scholar 

  7. Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional COx hydrogenation. Chem. Soc. Rev. 2020, 49, 6579–6591.

    Article  CAS  PubMed  Google Scholar 

  8. Tu, W. G.; Zhou, Y.; Zou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.

    Article  CAS  PubMed  Google Scholar 

  9. Hu, C.; Huang, H. W. Advances in piezoelectric polarization enhanced photocatalytic energy conversion. Acta Phys.—Chim. Sin. 2023, 39, 2212048.

    Article  Google Scholar 

  10. Chen, F.; Zhang, Y. H.; Huang, H. W. Layered photocatalytic nanomaterials for environmental applications. Chin. Chem. Lett. 2023, 34, 107523.

    Article  CAS  Google Scholar 

  11. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, P.; Yu, J. G.; Jaroniec, M. All-sodd-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Q. L.; Zhang, L. Y.; Yu, J. G.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063.

    Article  CAS  Google Scholar 

  14. Li, X.; Garlisi, C.; Guan, Q. S.; Anwer, S.; Al-Ali, K.; Palmisano, G.; Zheng, L. X. A review of material aspects in developing direct Z-scheme photocatalysts. Mater. Today 2021, 47, 75–107.

    Article  CAS  Google Scholar 

  15. Xi, Y. M.; Chen, W. B.; Dong, W. R.; Fan, Z. X.; Wang, K. F.; Shen, Y.; Tu, G. M.; Zhong, S. X.; Bai, S. Engineering an interfacial facet of S-scheme heterojunction for improved photocatalytic hydrogen evolution by modulating the internal electric field. ACS Appl. Mater. Interfaces 2021, 13, 39491–39500.

    Article  CAS  PubMed  Google Scholar 

  16. Li, J. Y.; Yuan, L.; Li, S. H.; Tang, Z. R.; Xu, Y. J. One-dimensional copper-based heterostructures toward photo-driven reduction of CO2 to sustainable fuels and feedstocks. J. Mater. Chem. A 2019, 7, 8676–8689.

    Article  CAS  Google Scholar 

  17. Zhang, W. H.; Mohamed, A. R.; Ong, W. J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now. Angew. Chem., Int. Ed. 2020, 59, 22894–22915.

    Article  CAS  Google Scholar 

  18. Wang, L. X.; Bie, C. B.; Yu, J. G. Challenges of Z-scheme photocatalytic mechanisms. Trends Chem. 2022, 4, 973–983.

    Article  CAS  Google Scholar 

  19. Wang, S. H.; Li, Z. R.; Yang, G. D.; Xu, Y. B.; Zheng, Y. Y.; Zhong, S. X.; Zhao, Y. L.; Bai, S. Embedding nano-piezoelectrics into heterointerfaces of S-scheme heterojunctions for boosting photocatalysis and piezophotocatalysis. Small 2023, 19, 2302717.

    Article  CAS  Google Scholar 

  20. Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Z-scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci. 2016, 3, 1500389.

    Article  Google Scholar 

  21. Yang, J. H.; Wang, D. E.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  CAS  PubMed  Google Scholar 

  22. Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

    Article  CAS  PubMed  Google Scholar 

  23. Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

    Article  Google Scholar 

  24. Di, J.; Lin, B.; Tang, B. J.; Guo, S. S.; Zhou, J. D.; Liu, Z. Engineering cocatalysts onto low-dimensional photocatalysts for CO2 reduction. Small Struct. 2021, 2, 2100046.

    Article  CAS  Google Scholar 

  25. Zhong, S. X.; Xi, Y. M.; Wu, S. J.; Liu, Q.; Zhao, L. H.; Bai, S. Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis. J. Mater. Chem. A 2020, 8, 14863–14894.

    Article  CAS  Google Scholar 

  26. Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

    Article  Google Scholar 

  27. Yang, G. D.; Wang, S. H.; Wu, Y. J.; Zhou, H.; Zhao, W.; Zhong, S. X.; Liu, L. C.; Bai, S. Spatially separated redox cocatalysts on ferroelectric nanoplates for improved piezophotocatalytic CO2 reduction and H2O oxidation. ACS Appl. Mater. Interfaces 2023, 15, 14228–14239.

    CAS  Google Scholar 

  28. Qiu, B. C.; Du, M. M.; Ma, Y. X.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. Integration of redox cocatalysts for artificial photosynthesis. Energy Environ. Sci. 2021, 14, 5260–5288.

    Article  CAS  Google Scholar 

  29. Sun, L.; Zhang, Z. Q.; Bian, J.; Bai, F. Q.; Su, H. W.; Li, Z. J.; Xie, J. J.; Xu, R. P.; Sun, J. H.; Bai, L. L. et al. A Z-scheme heterojunctional photocatalyst engineered with spatially separated dual redox sites for selective CO2 reduction with water: Insight by in situ μs-transient absorption spectra. Adv. Mater. 2023, 35, 2300064.

    Article  CAS  Google Scholar 

  30. Li, F.; Yue, X. Y.; Liao, Y. L.; Qiao, L.; Lv, K. L.; Xiang, Q. J. Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction. Nat. Commun. 2023, 14, 3901.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhou, X. F.; Fang, Y. X.; Cai, X.; Zhang, S. S.; Yang, S. Y.; Wang, H. Q.; Zhong, X. H.; Fang, Y. P. In situ photodeposited construction of Pt-CdS/g-C3N4-MnO, composite photocatalyst for efficient visible-light-driven overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 20579–20588.

    Article  CAS  PubMed  Google Scholar 

  32. Raziq, F.; Sun, L. Q.; Wang, Y. Y.; Zhang, X. L.; Humayun, M.; Ali, S.; Bai, L. L.; Qu, Y.; Yu, H. T.; Jing, L. Q. Synthesis of large surface-area g-C3N4 comodified with MnO, and Au-TiO2 as efficient visible-light photocatalysts for fuel production. Adv. Energy Mater. 2018, 8, 1701580.

    Article  Google Scholar 

  33. Wang, Z.; Wu, W. W.; Xu, Q.; Li, G. D.; Liu, S. H.; Jia, X. F.; Qin, Y.; Wang, Z. L. Type- II hetero-junction dual shell hollow spheres loaded with spatially separated cocatalyst for enhancing visible light hydrogen evolution. Nano Energy 2017, 38, 518–525.

    Article  CAS  Google Scholar 

  34. Zhang, Y.; Shi, H. L.; Zhao, S. Y.; Chen, Z. L.; Zheng, Y. Y.; Tu, G. M.; Zhong, S. X.; Zhao, Y. L.; Bai, S. Hollow plasmonic P-metal-N S-scheme heterojunction photoreactor with spatially separated dual cocatalysts toward artificial photosynthesis. Small 2024, 20, 2304050.

    Article  CAS  Google Scholar 

  35. Zhang, X. W.; Song, Y. L.; Niu, X. Y.; Lin, X. Y.; Zhong, S. X.; Lin, H. J.; Teng, B. T.; Bai, S. Emerging hollow artificial photosynthetic system with S-scheme heterojunction sandwiched between layered redox cocatalysts for overall CO2 reduction and H2O oxidation. Appl. Catal. B: Environ. 2024, 342, 123445.

    Article  CAS  Google Scholar 

  36. Liu, Q.; Wang, S. H.; Mo, W. H.; Zheng, Y. Y.; Xu, Y. B.; Yang, G. D.; Zhong, S. X.; Ma, J.; Liu, D.; Bai, S. Emerging stacked photocatalyst design enables spatially separated Ni(OH)2 edoxx cocatalysts for overall CO2 reduction and H2O oxidation. Small 2022, 18, 2104681.

    Article  CAS  Google Scholar 

  37. Lu, K. Q.; Li, Y. H.; Zhang, F.; Qi, M. Y.; Chen, X.; Tang, Z. R.; Yamada, Y. M. A.; Anpo, M.; Conte, M.; Xu, Y. J. Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction. Nat. Commun. 2020, 11, 5181.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, S.; Sun, Y. F.; Lei, F. C.; Liu, J. W.; Liang, L.; Li, T. W.; Pan, B. C.; Zhou, J. F.; Xie, Y. Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting. Nano Energy 2014, 8, 205–213.

    Article  CAS  Google Scholar 

  39. Wang, R. H.; Xu, C. H.; Sun, J.; Gao, L. Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: Nucleation mechanism and lithium storage properties. Sci. Rep. 2014, 4, 7171.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huang, C. J.; Ye, W. Q.; Liu, Q. W.; Qiu, X. Q. Dispersed Cu2O octahedrons on h-BN nanosheets for p- nitrophenol reduction. ACS Appl. Mater. Interfaces 2014, 6, 14469–14476.

    Article  CAS  PubMed  Google Scholar 

  41. Trenczek-Zajac, A.; Synowiec, M.; Zakrzewska, K.; Zazakowny, K.; Kowalski, K.; Dziedzic, A.; Radecka, M. Scavenger-supported photocatalytic evidence of an extended type I electronic structure of the TiO2@Fe2O3 interface. ACS Appl. Mater. Interfaces 2022, 14, 38255–38269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, P.; Cai, Y. L.; Mo, W. H.; Fan, Z. X.; Li, Z. R.; Wu, L. Y.; Zhong, S. X.; Bai, S. Modulating the Schottky barrier heights of plasmonic metal/semiconductor heterojunctions by graphene substrates for boosting photocatalytic water oxidation. Appl. Surf. Sci. 2024, 642, 158561.

    Article  CAS  Google Scholar 

  43. Low, J.; Dai, B. Z.; Tong, T.; Jiang, C. J.; Yu, J. G. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 2019, 31, 1802981

    Article  Google Scholar 

  44. Yuan, L.; Hung, S. F.; Tang, Z. R.; Chen, H. M.; Xiong, Y. J.; Xu, Y. J. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal. 2019, 9, 4824–4833.

    Article  CAS  Google Scholar 

  45. Li, S. H.; Qi, M. Y.; Fan, Y. Y.; Yang, Y.; Anpo, M.; Yamada, Y. M. A.; Tang, Z. R.; Xu, Y. J. Modulating photon harvesting through dynamic non-covalent interactions for enhanced photochemical CO2 reduction. Appl. Catal. B: Environ. 2021, 292, 120157.

    Article  CAS  Google Scholar 

  46. Toe, C. Y.; Zheng, Z. K.; Wu, H.; Scott, J.; Amal, R.; Ng, Y. H. Photocorrosion of cuprous oxide in hydrogen production: Rationalising self-oxidation or self-reduction. Angew. Chem., Int. Ed. 2018, 57, 13613–13617.

    Article  CAS  Google Scholar 

  47. Zhou, M.; Guo, Z. G.; Liu, Z. F. FeOOH as hole transfer layer to retard the photocorrosion of Cu2O for enhanced photoelctrochemical performance. Appl. Catal. B: Environ. 2020, 260, 118213.

    Article  CAS  Google Scholar 

  48. Weng, B.; Qi, M. Y.; Han, C.; Tang, Z. R.; Xu, Y. J. Photocorrosion inhibition of semiconductor-based photocatalysts: Basic principle, current development, and future perspective. ACS Catal. 2019, 9, 4642–4687.

    Article  CAS  Google Scholar 

  49. Wang, J. J.; Hu, C.; Zhang, Y. H.; Huang, H. W. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. Chin. J. Catal. 2022, 43, 1277–1285.

    Article  CAS  Google Scholar 

  50. Xi, Y. M.; Mo, W. H.; Fan, Z. X.; Hu, L. X.; Chen, W. B.; Zhang, Y.; Wang, P.; Zhong, S. X.; Zhao, Y. L.; Bai, S. A mesh-like BiOBr/Bi2S3 nanoarray heterojunction with hierarchical pores and oxygen vacancies for broadband CO2 photoeeduttion. J. Mater. Chem. A 2022, 10, 20934–20945.

    Article  CAS  Google Scholar 

  51. Jiang, Y.; Liao, J. F.; Chen, H. Y.; Zhang, H. H.; Li, J. Y.; Wang, X. D.; Kuang, D. B. Allosolid-state Z-scheme a-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction. Chem 2020, 6, 766–780.

    Article  CAS  Google Scholar 

  52. Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447

    Article  CAS  Google Scholar 

  53. Qi, M. Y.; Xu, Y. J. Efficient and direct functionalization of allylic sp3 C-H bonds with concomitant CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202311731.

    Article  CAS  Google Scholar 

  54. Kawabe, Y.; Ito, Y.; Hori, Y.; Kukunuri, S.; Shiokawa, F.; Nishiuchi, T.; Jeong, S.; Katagiri, K.; Xi, Z. Y.; Li, Z. K. et al. 1T/1H-SnS2 sheets for electrochemical CO2 reduction to formate. ACS Nano 2023, 17, 11318–11326

    Article  CAS  PubMed  Google Scholar 

  55. Dai, L.; Chen, Z. N.; Li, L. X.; Yin, P. Q.; Liu, Z. Q.; Zhang, H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 2020, 42, 1906915.

    Article  Google Scholar 

  56. Wang, R. N.; Wang, Z.; Wan, S. P.; Liu, Q.; Ding, J.; Zhong, Q. Facile layer regulation strategy of layered double hydroxide nanosheets for artificial photosynthesis and mechanism insight. Chem. Eng. J. 2022, 434, 134434.

    Article  CAS  Google Scholar 

  57. Sheng, J. P.; He, Y.; Li, J. Y.; Yuan, C. W.; Huang, H. W.; Wang, S. Y.; Sun, Y. J.; Wang, Z. M.; Dong, F. Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO2 to-CO photoreduction. ACS Nano 2020, 14, 13103–13114.

    Article  CAS  PubMed  Google Scholar 

  58. Mo, W. H.; Fan, Z. X.; Zhong, S. X.; Chen, W. B.; Hu, L. X.; Zhou, H.; Zhao, W.; Lin, H. J.; Ge, J.; Chen, J. R. et al. Embedding plasmonic metal into heterointerface of MOFs-encapsulated semiconductor hollow architecture for boosting CO2 photoreduction. Small 2023, 19, 2207705.

    Article  CAS  Google Scholar 

  59. Lei, B.; Cui, W.; Chen, P.; Chen, L. C.; Li, J. Y.; Dong, F. C-doping induced oxygen-vacancy in WO3 nanosheets for CO2 activation and photoreduction. ACS Catal. 2022, 12, 9670–9678.

    Article  CAS  Google Scholar 

  60. Wang, K.; Cao, M. Y.; Lu, J. B.; Lu, Y.; Lau, C. H.; Zheng, Y.; Fan, X. F. Oprantdtoo DRIFTS-MS investigation on plasmon-thermal coupling mechanism of CO2 hydrogenation on Au/TiO2: The enhanced generation of oxygen vacancies. Appl. Catal. B: Environ. 2021, 296, 120341.

    Article  CAS  Google Scholar 

  61. He, W. J.; Wei, Y. C.; Xiong, J.; Tang, Z. L.; Song, W. Y.; Liu, J.; Zhao, Z. Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts. Chem. Eng. J. 2022, 433, 133540.

    Article  CAS  Google Scholar 

  62. Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K. et al. Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4. Angew. Chem., Int. Ed. 2022, 61, e202209446.

    Article  CAS  Google Scholar 

  63. Verma, P.; Singh, A.; Rahimi, F. A.; Sarkar, P.; Nath, S.; Pati, S. K.; Maji, T. K. Charge- transfer regulated visible light driven photocatalytic H2 production and CO2 reduction in tetrathiafulvalene based coordination polymer gel. Nat. Commun. 2021, 12, 7313.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, L.; Xu, Y.; Su, L. Y.; He, T.; Zhang, L. Q.; Shen, H. X.; Cheng, Q.; Liu, L. C.; Bai, S.; Hong, S. H. Visible-light-enhanced hydrogen evolution through anodic furfural electro-oxidation using nickel atomically dispersed copper nanoparticles. Inorg. Chem. 2024, 63, 730–738.

    Article  CAS  PubMed  Google Scholar 

  65. Dai, F. X.; Zhang, M. M.; Han, J. S.; Li, Z. J.; Feng, S. H.; Xing, J.; Wang, L. Bifunctional core-shell co-catalyst for boosting photocatalytic CO2 reduction to CH4. Nano Res., in press, https://doi.org/10.1007/s12274-023-6107-y.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21603191), Zhejiang Provincial Natural Science Foundation of China (Nos. LY20B030003 and LQ16B010001), Public Welfare Technology Application Research Plan Project of Zhejiang Province (Analysis Test Item, No. 2017C37024), Foundation of Science and Technology Bureau of Jinhua (No. 20204185), and Self-Topic Fund of Zhejiang Normal University (No. 2020ZS04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichun Liu, Shuxian Zhong or Song Bai.

Electronic Supplementary Material

12274_2024_6514_MOESM1_ESM.pdf

Bifunctional noble-metal-free cocatalyst coating enabling better coupling of photocatalytic CO2 reduction and H2O oxidation on direct Z-scheme heterojunction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Mo, W., Zhang, Y. et al. Bifunctional noble-metal-free cocatalyst coating enabling better coupling of photocatalytic CO2 reduction and H2O oxidation on direct Z-scheme heterojunction. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6514-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6514-8

Keywords

Navigation