Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser-driven broadband near-infrared light source with watt-level output

This article has been updated

Abstract

High-power broadband near-infrared (NIR) light sources based on laser-excited phosphors are highly desirable for photonics applications in night vision, biomedical imaging and sensing; however, the inherent energy gap law poses a great challenge for the development of efficient NIR luminescent materials. Herein we report a translucent MgO:Cr3+ ceramic fabricated by spark plasma sintering, which exhibits a broadband NIR emission peak at 810 nm, with an external quantum efficiency of 81% and ultra-high thermal conductivity of 52 W m–1 K–1. When pumped with a blue laser, the MgO:Cr3+ ceramic provides an output power exceeding 6 W with a light conversion efficiency of 29%. This laser-driven broadband NIR light source makes it possible to perform NIR imaging with a spatial resolution of 6 lp mm–1, and is a promising technology for emerging imaging applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wafer-scale MgO:Cr3+ translucent ceramics.
Fig. 2: Fluorescence spectra and radiation mechanism of translucent MgO:Cr3+ ceramics.
Fig. 3: Excited state ET mechanism of MgO:Cr3+ ceramic.
Fig. 4: Laser-driven luminescence properties of MgO:Cr3+ ceramics.
Fig. 5: Laser-driven NIR light sources and the applications.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable requests.

Change history

  • 08 March 2024

    In the version of the article initially published, in the Abstract, the text now reading “...a light conversion efficiency of 29%” previously read “...an electro-optical conversion efficiency of 29%” and was updated for clarity.

References

  1. Vasilopoulou, M. et al. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photon. 15, 656–669 (2021).

    Article  CAS  ADS  Google Scholar 

  2. Sun, Y. Q. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Saif, M. et al. Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nat. Biomed. Eng. 4, 801–813 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He, Y. et al. Recent progress of nondestructive techniques for fruits damage inspection: a review. Crit. Rev. Food Sci. Nutr. 62, 5476–5494 (2022).

    Article  PubMed  Google Scholar 

  5. Shen, J. C. & He, W. The fabrication strategies of near-infrared absorbing transition metal complexes. Coord. Chem. Rev. 483, 215096 (2023).

    Article  CAS  Google Scholar 

  6. Wei, Y. C. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton-vibration decoupling. Nat. Photon. 14, 570–577 (2020).

    Article  CAS  ADS  Google Scholar 

  7. Huang, W. T. et al. Near-infrared windows I and II phosphors for theranostic applications: spectroscopy, bioimaging, and light-emitting diode photobiomodulation. Adv. Opt. Mater. 11, 2202061 (2022).

    Article  Google Scholar 

  8. Liu, D. J. et al. Simultaneous broadening and enhancement of Cr3+ photoluminescence in LiIn2SbO6 by chemical unit cosubstitution: night-vision and near-infrared spectroscopy detection applications. Angew. Chem. Int. Ed. 60, 14644–14649 (2021).

    Article  CAS  Google Scholar 

  9. Zheng, G. J. et al. Near-unity and zero-thermal-quenching far-red-emitting composite ceramics via pressureless glass crystallization. Laser Photon. Rev. 15, 2100060 (2021).

    Article  CAS  ADS  Google Scholar 

  10. Gu, S. M., Liu, B. M., Si, S. C. & Wang, J. Laser-driven NIR light source based on MgO:Cr3+,Ni2+ phosphor-in-glass film for NIR spectroscopy application. J. Mater. Chem. C 11, 9014–9022 (2023).

    Article  CAS  Google Scholar 

  11. Wierer, J. J., Tsao, J. Y. & Sizov, D. S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photon. Rev. 7, 963–993 (2013).

    Article  CAS  ADS  Google Scholar 

  12. Yang, Z. Y. et al. Thermally stable red-emitting oxide ceramics for laser lighting. Adv. Mater. 35, 2301837 (2023).

    Article  CAS  Google Scholar 

  13. Zhang, Y. Q. et al. Robust YAG:Ce single crystal for ultra-high efficiency laser lighting. J. Rare Earths 40, 717–724 (2022).

    Article  CAS  Google Scholar 

  14. Yao, Q. et al. YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv. Mater. 32, 1907888 (2020).

    Article  CAS  Google Scholar 

  15. Jiang, H. J. et al. Ultra-efficient GAGG:Cr3+ ceramic phosphor-converted laser diode: a promising high-power compact near-infrared light source enabling clear imaging. Adv. Opt. Mater. 10, 2102741 (2022).

    Article  CAS  Google Scholar 

  16. Zheng, G. J. et al. Glass-crystallized luminescence translucent ceramics toward high-performance broadband NIR LEDs. Adv. Sci. 9, 2105713 (2022).

    Article  CAS  Google Scholar 

  17. Qiao, J. W., Zhou, G. J., Zhou, Y. Y., Zhang, Q. Y. & Xia, Z. G. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat. Commun. 10, 5267 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  18. Zhao, F. Y., Song, Z. & Liu, Q. L. Advances in chromium-activated phosphors for near-infrared light sources. Laser Photon. Rev. 16, 2200380 (2022).

    Article  CAS  ADS  Google Scholar 

  19. Liu, G. C., Hu, T., Molokeev, M. S. & Xia, Z. G. Li/Na substitution and Yb3+ co-doping enabling tunable near-infrared emission in LiIn2SbO6:Cr3+ phosphors for light-emitting diodes. iScience 24, 102250 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Rajendran, V., Huang, W.-T., Chen, K.-C., Chang, H. & Liu, R.-S. Energy-saving chromium-activated garnet-structured phosphor-converted near-infrared light-emitting diodes. J. Mater. Chem. C 10, 14367 (2022).

    Article  CAS  Google Scholar 

  21. He, F. Q. et al. Interstitial Li+ occupancy enabling radiative/nonradiative transition control toward highly efficient Cr3+-based near-infrared luminescence. ACS Appl. Mater. Interfaces 14, 31035–31043 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Qiao, J. W. et al. Near-infrared light-emitting diode utilizing europium-activated calcium oxide phosphor with external quantum efficiency of up to 54.7%. Adv. Mater. 34, 2201887 (2022).

    Article  CAS  Google Scholar 

  23. Liu, G. C., Molokeev, M. S. & Xia, Z. G. Structural rigidity control toward Cr3+-based broadband near-infrared luminescence with enhanced thermal stability. Chem. Mater. 34, 1376–1384 (2022).

    Article  CAS  Google Scholar 

  24. Chen, X. R., Liu, B. G. & Xu, J. Application-oriented design of phosphors for laser lighting. Chin. J. Lumin. 44, 759–770 (2023).

    Article  CAS  ADS  Google Scholar 

  25. Li, S. X., Guo, Y. Q. & Xie, R.-J. Laser phosphors for next-generation lighting applications. Acc. Mater. Res. 3, 1299–1308 (2022).

    Article  CAS  Google Scholar 

  26. Hu, T. et al. Glass crystallization making red phosphor for high-power warm white lighting. Light: Sci. Appl. 10, 56 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Liu, G. C. & Xia, Z. G. Modulation of thermally stable photoluminescence in Cr3+-based near-infrared phosphors. J. Phys. Chem. Lett. 13, 5001–5008 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Kim, Y. H. et al. A zero-thermal-quenching phosphor. Nat. Mater. 16, 543–550 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Zhao, M. et al. Efficient broadband near-infrared phosphor Sr2ScSbO6:Cr3+ for solar-like lighting. Sci. China Mater. 645, 748–756 (2021).

    Google Scholar 

  30. Zhao, M. et al. Li substituent tuning of LED phosphors with enhanced efficiency, tunable photoluminescence, and improved thermal stability. Sci. Adv. 5, eaav0363 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  31. Pournajaf, R., Hassanzadeh-Tabrizi, S. A., Ebrahimi-Kahrizsangi, R., Alhaji, A. & Nourbakhsh, A. A. Polycrystalline infrared-transparent MgO fabricated by spark plasma sintering. Ceram. Int. 45, 18943–18950 (2019).

    Article  CAS  Google Scholar 

  32. Zhao, H. Y. et al. Novel high-thermal-conductivity composite ceramic phosphors for high-brightness laser-driven lighting. J. Mater. Chem. C 9, 10487–10496 (2021).

    Article  CAS  Google Scholar 

  33. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Cryst. A 32, 751–767 (1976).

    Article  Google Scholar 

  34. McDonagh, C. M., Hendersont, B. & Imbusc, G. F. Optical detection of magnetic resonance in the vibronic sidebands of R and N lines in MgO:Cr3+. J Phys. C 13, 6025–6031 (1980).

    Article  CAS  ADS  Google Scholar 

  35. Mikenda, W. N-lines in the luminescence spectra of Cr3+-doped spinels (III) partial spectra. J. Lumin. 26, 85–98 (1981).

    Article  CAS  Google Scholar 

  36. O’Nell, M. B., Gibson, P. N. & Henderson, B. Localized excitation transfer processes in MgO:Cr3+. J. Lumin. 42, 235–243 (1988).

    Article  Google Scholar 

  37. Li, C. J. & Zhong, J. Y. Efficient and thermally robust broadband near-infrared emission in a garnet Ca3MgHfGe3O12:Cr3+ phosphor. Adv. Opt. Mater. 11, 2202323 (2023).

    Article  CAS  Google Scholar 

  38. Kim, I.-W. et al. Structural, luminescence and EPR properties of deep red emitting MgY2Al4SiO12:Cr3+ garnet phosphor. J. Lumin. 220, 116975 (2020).

    Article  CAS  Google Scholar 

  39. Li, C. J. & Zhong, J. Y. Highly efficient broadband near-infrared luminescence with zero-thermal-quenching in garnet Y3In2Ga3O12:Cr3+ phosphors. Chem. Mater. 34, 8418–8426 (2022).

    Article  CAS  ADS  Google Scholar 

  40. He, F. Q. et al. A general ammonium salt assisted synthesis strategy for Cr3+-doped hexafluorides with highly efficient near infrared emissions. Adv. Funct. Mater. 31, 2103743 (2021).

    Article  CAS  Google Scholar 

  41. Wang, T. Z., Liu, G. C. & Xia, Z. G. Chemical unit co-substitution enabling broadband and tunable near-infrared emission in garnet-type Lu3Sc2Ga3O12:Cr3+ phosphors. Microstructures 2, 19 (2022).

    Article  CAS  Google Scholar 

  42. Liang, H. et al. A highly efficient and broadband near-infrared-emitting garnet phosphor for plant lighting realized by cation co-substitution in lutetium aluminum garnet. J. Alloys Compd. 937, 168374 (2023).

    Article  CAS  Google Scholar 

  43. Zou, X. K. et al. A highly efficient and suitable spectral profile Cr3+-doped garnet near-infrared emitting phosphor for regulating photomorphogenesis of plants. Chem. Eng. J. 428, 132003 (2022).

    Article  CAS  Google Scholar 

  44. Wang, J. C. et al. Thermally self-managing YAG:Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration. J. Mater. Chem. C 7, 3901–3908 (2019).

    Article  CAS  Google Scholar 

  45. Chang, H. et al. Dopant and compositional modulation triggered long-wavelength ultra-broadband and tunable NIR emission in MgO: Cr3+ phosphor for NIR spectroscopy applications. Ceram. Int. 49, 309–322 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (grant no. 51972118), the National Key Research and Development Program of China (grant no. 2021YFB3500401) and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (grant no. 2017BT01X137).

Author information

Authors and Affiliations

Authors

Contributions

Z.G.X. initiated and guided the research. G.C.L., W.B.C. and Z.X. synthesized and characterized the samples, and wrote the paper, Z.G.X. and Y.Z.W. revised it. S.Z. interpreted the theoretical and experimental results. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Zhiguo Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Quanlin Liu, Xiaojun Wang, Rong-Jun Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–13, Equations 1–7 and References.

Supplementary Figs. 8, 9 and 11

Source Data for Supplementary Figs. 8a,b, 9 and 11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Chen, W., Xiong, Z. et al. Laser-driven broadband near-infrared light source with watt-level output. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01400-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01400-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing