Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Another renaissance for bile acid gastrointestinal microbiology

Abstract

The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon–Bjӧrkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.

Key points

  • Co-metabolism of bile acids is among the most studied aspects of host–microbiota interactions important for human health, although many mechanistic questions remain unanswered.

  • A substantial gap in our knowledge still exists with respect to host synthesis of bile acid A/B-ring trans-isomers, known as allo-bile acids.

  • Untargeted metabolomics identified microbially conjugated bile acids, which seem to be generated via bile salt hydrolase enzymes and can signal through PXR and FXR, although their physiological relevance is not fully understood.

  • Much of the biochemistry and enzymology of microbial bile acid 7-dehydroxylation is established; however, the enzymology of C3-dehydroxylation and C12-dehydroxylation requires additional work as do host responses to the resultant end-products.

  • The oxidation and epimerization of bile acid hydroxyl groups greatly expand the diversity of bile acid metabolites as each hydroxyl toggles among three stable positions (for example, 3α-OH, 3-oxo and 3β-OH).

  • Secondary bile acid epimers that have not been measured historically are emerging as potent modulators of the balance between T helper 17-mediated inflammation and immunosuppressive regulatory T cells in the intestine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bile acid structure and function.
Fig. 2: The enterohepatic circulation of bile acids.
Fig. 3: Targeting microbiota–bile acid interactions as potential therapeutic approaches for gastrointestinal and metabolic diseases.
Fig. 4: Bile acid biotransformations in the human large intestine.
Fig. 5: Modulation of inflammation and immune cell differentiation and function by secondary bile acid derivatives in the gastrointestinal tract.

Similar content being viewed by others

References

  1. Haslewood, G. A. The biological significance of chemical differences in bile salts. Biol. Rev. Camb. Philos. Soc. 39, 537–574 (1964).

    Article  CAS  PubMed  Google Scholar 

  2. Hofmann, A. F., Hagey, L. R. & Krasowski, M. D. Bile salts of vertebrates: structural variation and possible evolutionary significance. J. Lipid Res. 51, 226–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haslewood, G. A. Bile salt evolution. J. Lipid Res. 8, 535–550 (1967).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, D. Q. & Carey, M. C. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review. World J. Gastroenterol. 20, 9952–9975 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Frisch, K. & Alstrup, A. K. O. On the evolution of bile salts and the farnesoid X receptor in vertebrates. Physiol. Biochem. Zool. 91, 797–813 (2018).

    Article  PubMed  Google Scholar 

  6. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Wahlstrom, A., Sayin, S. I., Marschall, H. U. & Backhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

    Article  PubMed  Google Scholar 

  8. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Cai, J., Sun, L. & Gonzalez, F. J. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 30, 289–300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dam, H. Medical aspects of vitamin K. Lancet 63, 353 (1943).

    CAS  Google Scholar 

  11. Hofmann, A. F. Bile acids: trying to understand their chemistry and biology with the hope of helping patients. Hepatology 49, 1403–1418 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Hofmann, A. F. & Hagey, L. R. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J. Lipid Res. 55, 1553–1595 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Faassen, A. et al. Plasma deoxycholic acid is related to deoxycholic acid in faecal water. Cancer Lett. 114, 293–294 (1997).

    Article  PubMed  Google Scholar 

  14. Bayerdorffer, E. et al. Unconjugated secondary bile acids in the serum of patients with colorectal adenomas. Gut 36, 268–273 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berr, F., Kullak-Ublick, G. A., Paumgartner, G., Munzing, W. & Hylemon, P. B. 7α-Dehydroxylating bacteria enhance deoxycholic acid input and cholesterol saturation of bile in patients with gallstones. Gastroenterology 111, 1611–1620 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, H. & Hylemon, P. B. Bile acids are nutrient signaling hormones. Steroids 86, 62–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Makishima, M. et al. Identification of a nuclear receptor for bile acids. Science 284, 1362–1365 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, H., Chen, J., Hollister, K., Sowers, L. C. & Forman, B. M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell 3, 543–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365–1368 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Staudinger, J. L. et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl Acad. Sci. USA 98, 3369–3374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Guo, G. L. et al. Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity. J. Biol. Chem. 278, 45062–45071 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Kawamata, Y. et al. A G protein-coupled receptor responsive to bile acids. J. Biol. Chem. 278, 9435–9440 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Raufman, J. P., Cheng, K. & Zimniak, P. Activation of muscarinic receptor signaling by bile acids: physiological and medical implications. Dig. Dis. Sci. 48, 1431–1444 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Nagahashi, M. et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. J. Lipid Res. 57, 1636–1643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paik, D. et al. Human gut bacteria produce TH17-modulating bile acid metabolites. Nature 603, 907–912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, W. et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29, 1366–1377.e9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fuchs, C. D. & Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 19, 432–450 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Jia, W., Xie, G. & Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. O’Keefe, S. J. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 13, 691–706 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ocvirk, S. & O’Keefe, S. J. D. Dietary fat, bile acid metabolism and colorectal cancer. Semin. Cancer Biol. 73, 347–355 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Ridlon, J. M., Daniel, S. L. & Gaskins, H. R. The Hylemon-Bjorkhem pathway of bile acid 7-dehydroxylation: history, biochemistry, and microbiology. J. Lipid Res. 64, 100392 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Russell, D. W. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 50, S120–S125 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pandak, W. M. & Kakiyama, G. The acidic pathway of bile acid synthesis: not just an alternative pathway. Liver Res. 3, 88–98 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Phelps, T., Snyder, E., Rodriguez, E., Child, H. & Harvey, P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol. Sex. Differ. 10, 52 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sjoland, W. et al. Absence of gut microbiota reduces neonatal survival and exacerbates liver disease in Cyp2c70-deficient mice with a human-like bile acid composition. Clin. Sci. 137, 995–1011 (2023).

    Article  Google Scholar 

  42. Truong, J. K. et al. Ileal bile acid transporter inhibition in Cyp2c70 KO mice ameliorates cholestatic liver injury. J. Lipid Res. 63, 100261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ridlon, J. M., Wolf, P. G. & Gaskins, H. R. Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 7, 201–215 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, J. & Dawson, P. A. Animal models to study bile acid metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 895–911 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Daly, J. W., Keely, S. J. & Gahan, C. G. M. Functional and phylogenetic diversity of BSH and PVA enzymes. Microorganisms 9, 732 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wolf, P. G. et al. Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer. Microbiome 10, 64 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hale, V. L. et al. Distinct microbes, metabolites, and ecologies define the microbiome in deficient and proficient mismatch repair colorectal cancers. Genome Med. 10, 78 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yazici, C. et al. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut 66, 1983–1994 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Goossens, J. F. & Bailly, C. Ursodeoxycholic acid and cancer: from chemoprevention to chemotherapy. Pharmacol. Ther. 203, 107396 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Pellicciari, R. et al. Avicholic acid: a lead compound from birds on the route to potent TGR5 modulators. ACS Med. Chem. Lett. 3, 273–277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hagey, L. R., Vidal, N., Hofmann, A. F. & Krasowski, M. D. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol. Biol. 10, 133 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gregor, R. et al. Mammalian gut metabolomes mirror microbiome composition and host phylogeny. ISME J. 16, 1262–1274 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Wen, J. et al. Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. Sci. Adv. 7, eabg1371 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shiffka, S. J. et al. Quantification of common and planar bile acids in tissues and cultured cells. J. Lipid Res. 61, 1524–1535 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shiffka, S. J., Kane, M. A. & Swaan, P. W. Planar bile acids in health and disease. Biochim. Biophys. Acta Biomembr. 1859, 2269–2276 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Hagey, L. R., Moller, P. R., Hofmann, A. F. & Krasowski, M. D. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway. Physiol. Biochem. Zool. 83, 308–321 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Bokkenheuser, V., Hoshita, T. & Mosbach, E. H. Bacterial 7-dehydroxylation of cholic acid and allocholic acid. J. Lipid Res. 10, 421–426 (1969).

    Article  CAS  PubMed  Google Scholar 

  59. Lee, J. W. et al. Formation of secondary allo-bile acids by novel enzymes from gut Firmicutes. Gut Microbes 14, 2132903 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Frankel, M. The biological splitting of conjugated bile acids. Biochem. J. 30, 2111–2116 (1936).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dong, Z. & Lee, B. H. Bile salt hydrolases: structure and function, substrate preference, and inhibitor development. Protein Sci. 27, 1742–1754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chand, D. et al. Molecular features of bile salt hydrolases and relevance in human health. Biochim. Biophys. Acta Gen. Subj. 1861, 2981–2991 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Joyce, S. A., Shanahan, F., Hill, C. & Gahan, C. G. Bacterial bile salt hydrolase in host metabolism: potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes 5, 669–674 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Begley, M., Hill, C. & Gahan, C. G. Bile salt hydrolase activity in probiotics. Appl. Env. Microbiol. 72, 1729–1738 (2006).

    Article  CAS  Google Scholar 

  65. Foley, M. H., O’Flaherty, S., Barrangou, R. & Theriot, C. M. Bile salt hydrolases: gatekeepers of bile acid metabolism and host-microbiome crosstalk in the gastrointestinal tract. PLoS Pathog. 15, e1007581 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Foley, M. H. et al. Bile salt hydrolases shape the bile acid landscape and restrict Clostridioides difficile growth in the murine gut. Nat. Microbiol. 8, 611–628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Foley, M. H. et al. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proc. Natl Acad. Sci. USA 118, e2017709118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. Bile salt hydrolase of Bifidobacterium longum-biochemical and genetic characterization. Appl. Env. Microbiol. 66, 2502–2512 (2000).

    Article  CAS  Google Scholar 

  69. Chand, D., Panigrahi, P., Varshney, N., Ramasamy, S. & Suresh, C. G. Structure and function of a highly active bile salt hydrolase (BSH) from Enterococcus faecalis and post-translational processing of BSH enzymes. Biochim. Biophys. Acta Proteins Proteom. 1866, 507–518 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Yao, L. et al. A selective gut bacterial bile salt hydrolase alters host metabolism. eLife 7, e37182 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sun, L. et al. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat. Commun. 14, 755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Marchesini, M. I. et al. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization. PLoS One 6, e28480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Delpino, M. V. et al. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect. Immun. 75, 299–305 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Gahan, C. G. & Hill, C. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Front. Cell Infect. Microbiol. 4, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dussurget, O. et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol. Microbiol. 45, 1095–1106 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Begley, M., Sleator, R. D., Gahan, C. G. & Hill, C. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73, 894–904 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Begley, M., Gahan, C. G. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Buchinger, T. J., Li, W. & Johnson, N. S. Bile salts as semiochemicals in fish. Chem. Senses 39, 647–654 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Hahn, M. A., Effertz, C., Bigler, L. & von Elert, E. 5α-Cyprinol sulfate, a bile salt from fish, induces diel vertical migration in Daphnia. eLife 8, e44791 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goto, T. et al. Physicochemical and physiological properties of 5α-cyprinol sulfate, the toxic bile salt of cyprinid fish. J. Lipid Res. 44, 1643–1651 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Abt, M. C., McKenney, P. T. & Pamer, E. G. Clostridium difficile colitis: pathogenesis and host defence. Nat. Rev. Microbiol. 14, 609–620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Craddock, A. L. et al. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am. J. Physiol. 274, G157–G169 (1998).

    CAS  PubMed  Google Scholar 

  84. Dietschy, J. M. & Turley, S. D. Control of cholesterol turnover in the mouse. J. Biol. Chem. 277, 3801–3804 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. De Smet, I., De Boever, P. & Verstraete, W. Cholesterol lowering in pigs through enhanced bacterial bile salt hydrolase activity. Br. J. Nutr. 79, 185–194 (1998).

    Article  PubMed  Google Scholar 

  86. Damodharan, K., Lee, Y. S., Palaniyandi, S. A., Yang, S. H. & Suh, J. W. Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front. Microbiol. 6, 768 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ooi, L. G. & Liong, M. T. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int. J. Mol. Sci. 11, 2499–2522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feighner, S. D. & Dashkevicz, M. P. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Appl. Env. Microbiol. 53, 331–336 (1987).

    Article  CAS  Google Scholar 

  89. Geng, W. et al. Evaluation of bile salt hydrolase inhibitor efficacy for modulating host bile profile and physiology using a chicken model system. Sci. Rep. 10, 4941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Korpela, K. et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7, 10410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Long, S. L., Gahan, C. G. & Joyce, S. A. Interactions between gut bacteria and bile in health and disease. Mol. Asp. Med. 56, 54–65 (2017).

    Article  CAS  Google Scholar 

  92. Nunez-Sanchez, M. A. et al. Microbial bile salt hydrolase activity influences gene expression profiles and gastrointestinal maturation in infant mice. Gut Microbes 14, 2149023 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Joyce, S. A. et al. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc. Natl Acad. Sci. USA 111, 7421–7426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Song, Z. et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome 7, 9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jia, B., Park, D., Hahn, Y. & Jeon, C. O. Metagenomic analysis of the human microbiome reveals the association between the abundance of gut bile salt hydrolases and host health. Gut Microbes 11, 1300–1313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Adhikari, A. A. et al. A gut-restricted lithocholic acid analog as an inhibitor of gut bacterial bile salt hydrolases. ACS Chem. Biol. 16, 1401–1412 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Adhikari, A. A. et al. Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nat. Chem. Biol. 16, 318–326 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chatterjee, B., Echchgadda, I. & Song, C. S. Vitamin D receptor regulation of the steroid/bile acid sulfotransferase SULT2A1. Methods Enzymol. 400, 165–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Chaudhari, S. N. et al. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe 29, 408–424.e7 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Eyssen, H. J., Parmentier, G. G. & Mertens, J. A. Sulfate bile acids in germ-free and conventional mice. Eur. J. Biochem. 66, 507–514 (1976).

    Article  CAS  PubMed  Google Scholar 

  101. Robben, J., Caenepeel, P., Van Eldere, J. & Eyssen, H. Effects of intestinal microbial bile salt sulfatase activity on bile salt kinetics in gnotobiotic rats. Gastroenterology 94, 494–502 (1988).

    Article  CAS  PubMed  Google Scholar 

  102. Robben, J., Parmentier, G. & Eyssen, H. Isolation of a rat intestinal Clostridium strain producing 5α- and 5β-bile salt 3α-sulfatase activity. Appl. Env. Microbiol. 51, 32–38 (1986).

    Article  CAS  Google Scholar 

  103. Huijghebaert, S. M. & Eyssen, H. J. Specificity of bile salt sulfatase activity from Clostridium sp. strains S1. Appl. Env. Microbiol. 44, 1030–1034 (1982).

    Article  CAS  Google Scholar 

  104. Eyssen, H., Van Eldere, J., Parmentier, G., Huijghebaert, S. & Mertens, J. Influence of microbial bile salt desulfation upon the fecal excretion of bile salts in gnotobiotic rats. J. Steroid Biochem. 22, 547–554 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Van Eldere, J., Robben, J., De Pauw, G., Merckx, R. & Eyssen, H. Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans. Appl. Env. Microbiol. 54, 2112–2117 (1988).

    Article  Google Scholar 

  106. Yao, L. et al. A biosynthetic pathway for the selective sulfonation of steroidal metabolites by human gut bacteria. Nat. Microbiol. 7, 1404–1418 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hofmann, A. F. et al. A proposed nomenclature for bile acids. J. Lipid Res. 33, 599–604 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Morgan, X. C., Segata, N. & Huttenhower, C. Biodiversity and functional genomics in the human microbiome. Trends Genet. 29, 51–58 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Human Microbiome Project Consortium.A framework for human microbiome research. Nature 486, 215–221 (2012).

    Article  Google Scholar 

  110. Quinn, R. A. et al. Bridging the gap between analytical and microbial sciences in microbiome research. mSystems 6, e0058521 (2021).

    Article  PubMed  Google Scholar 

  111. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guzior, D. et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature https://doi.org/10.1038/s41586-024-07017-8 (2024).

  113. Rimal, B. et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature https://doi.org/10.1038/s41586-023-06990-w (2024).

  114. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from humans. Nature https://doi.org/10.1038/s41586-023-06906-8 (2023).

  116. Edenharder, R. & Hammann, R. Deoxycholic acid methyl ester — a novel bacterial metabolite of cholic acid. Syst. Appl. Microbiol. 6, 18–22 (1985).

    Article  CAS  Google Scholar 

  117. Edenharder, R. & Schneider, J. 12β-Dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficile and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12α-dehydrogenating Eubacterium lentum. Appl. Env. Microbiol. 49, 964–968 (1985).

    Article  CAS  Google Scholar 

  118. Takei, H. et al. Characterization of long-chain fatty acid-linked bile acids: a major conjugation form of 3β-hydroxy bile acids in feces. J. Lipid Res. 63, 100275 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Benson, G. M. et al. Polydeoxycholate in human and hamster feces: a major product of cholate metabolism. J. Lipid Res. 34, 2121–2134 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Schoeler, M. & Caesar, R. Dietary lipids, gut microbiota and lipid metabolism. Rev. Endocr. Metab. Disord. 20, 461–472 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ridlon, J. M. & Bajaj, J. S. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm. Sin. B 5, 99–105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ridlon, J. M. Conceptualizing the vertebrate sterolbiome. Appl. Environ. Microbiol. 86, e00641-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Samuelsson, B. Bile acids and steroids: 96. On the mechanism of the biological formation of deoxycholic acid from cholic acid. J. Biol. Chem. 235, 361–366 (1960).

    Article  CAS  Google Scholar 

  124. Ferrari, A. & Beretta, L. Activity on bile acids of a Clostridium bifermentans cell-free extract. FEBS Lett. 75, 163–165 (1977).

    Article  CAS  PubMed  Google Scholar 

  125. White, B. A. et al. Cofactor requirements for 7α-dehydroxylation of cholic and chenodeoxycholic acid in cell extracts of the intestinal anaerobic bacterium, Eubacterium species V.P.I. 12708. J. Lipid Res. 22, 891–898 (1981).

    Article  CAS  PubMed  Google Scholar 

  126. Hylemon, P. B., Melone, P. D., Franklund, C. V., Lund, E. & Björkhem, I. Mechanism of intestinal 7α-dehydroxylation of cholic acid: evidence that allo-deoxycholic acid is an inducible side-product. J. Lipid Res. 32, 89–96 (1991).

    Article  CAS  PubMed  Google Scholar 

  127. Mallonee, D. H., White, W. B. & Hylemon, P. B. Cloning and sequencing of a bile acid-inducible operon from Eubacterium sp. strain VPI 12708. J. Bacteriol. 172, 7011–7019 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wise, J. L. & Cummings, B. P. The 7-α-dehydroxylation pathway: an integral component of gut bacterial bile acid metabolism and potential therapeutic target. Front. Microbiol. 13, 1093420 (2022).

    Article  PubMed  Google Scholar 

  129. Funabashi, M. et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566–570 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Heinken, A. et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 7, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 25, 679–689 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Schmassmann, A. et al. Cholylsarcosine, a new bile acid analogue: metabolism and effect on biliary secretion in humans. Gastroenterology 104, 1171–1181 (1993).

    Article  CAS  PubMed  Google Scholar 

  134. Batta, A. K. et al. Side chain conjugation prevents bacterial 7-dehydroxylation of bile acids. J. Biol. Chem. 265, 10925–10928 (1990).

    Article  CAS  PubMed  Google Scholar 

  135. White, B. A., Lipsky, R. L., Fricke, R. J. & Hylemon, P. B. Bile acid induction specificity of 7α-dehydroxylase activity in an intestinal Eubacterium species. Steroids 35, 103–109 (1980).

    Article  CAS  PubMed  Google Scholar 

  136. Kim, K. H. et al. Identification and characterization of major bile acid 7α-dehydroxylating bacteria in the human gut. mSystems 7, e0045522 (2022).

    Article  PubMed  Google Scholar 

  137. Devendran, S. et al. Clostridium scindens ATCC 35704: Integration of nutritional requirements, the complete genome sequence, and global transcriptional responses to bile acids. Appl. Environ. Microbiol. 85, e00052-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Ridlon, J. M., Harris, S. C., Bhowmik, S., Kang, D. J. & Hylemon, P. B. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 22–39 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Doerner, K. C., Takamine, F., LaVoie, C. P., Mallonee, D. H. & Hylemon, P. B. Assessment of fecal bacteria with bile acid 7α-dehydroxylating activity for the presence of bai-like genes. Appl. Env. Microbiol. 63, 1185–1188 (1997).

    Article  CAS  Google Scholar 

  140. Marion, S. et al. Biogeography of microbial bile acid transformations along the murine gut. J. Lipid Res. 61, 1450–1463 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Studer, N. et al. Functional intestinal bile acid 7α-dehydroxylation by Clostridium scindens associated with protection from Clostridium difficile infection in a gnotobiotic mouse model. Front. Cell Infect. Microbiol. 6, 191 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wang, M. et al. Strain dropouts reveal interactions that govern the metabolic output of the gut microbiome. Cell 186, 2839–2852.e21 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Ridlon, J. M. et al. The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice. Gut Microbes 11, 381–404 (2020).

    Article  PubMed  Google Scholar 

  144. Narushima, S. et al. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids 41, 835–843 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Grau, K. R. et al. The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nat. Microbiol. 5, 84–92 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut. Dig. Dis. 33, 338–345 (2015).

    Article  PubMed  Google Scholar 

  150. Kakiyama, G. et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 58, 949–955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hylemon, P. B., Su, L., Zheng, P. C., Bajaj, J. S. & Zhou, H. Bile acids, gut microbiome and the road to fatty liver disease. Compr. Physiol. 12, 2719–2730 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Bajaj, J. S. et al. Antibiotic-associated disruption of microbiota composition and function in cirrhosis is restored by fecal transplant. Hepatology 68, 1549–1558 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Kallner, A. The transformation of deoxycholic acid into allodeoxycholic acid in the rat. Bile acids and steroids.174. Acta Chem. Scand. 21, 87–92 (1967).

    Article  CAS  PubMed  Google Scholar 

  154. Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroenterol. 15, 3329–3340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Allan, R. N., Thistle, J. L., Hofmann, A. F., Carter, J. A. & Yu, P. Y. Lithocholate metabolism during chenotherapy for gallstone dissolution. 1. Serum levels of sulphated and unsulphated lithocholates. Gut 17, 405–412 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hofmann, A. F. Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab. Rev. 36, 703–722 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Borriello, S. P. & Owen, R. W. The metabolism of lithocholic acid and lithocholic acid-3-α-sulfate by human fecal bacteria. Lipids 17, 477–482 (1982).

    Article  CAS  PubMed  Google Scholar 

  158. Kelsey, M. I., Molina, J. E., Huang, S. K. & Hwang, K. K. The identification of microbial metabolites of sulfolithocholic acid. J. Lipid Res. 21, 751–759 (1980).

    Article  CAS  PubMed  Google Scholar 

  159. Garcia, C. J., Kosek, V., Beltran, D., Tomas-Barberan, F. A. & Hajslova, J. Production of new microbially conjugated bile acids by human gut microbiota. Biomolecules 12, 687 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Juste, C. & Gérard, P. Cholesterol-to-coprostanol conversion by the gut microbiota: what we know, suspect, and ignore. Microorganisms 9, 1881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kenny, D. J. et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 28, 245–257.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Fukuchi, J., Song, C., Dai, Q., Hiipakka, R. A. & Liao, S. 5β-Cholane activators of the farnesol X receptor. J. Steroid Biochem. Mol. Biol. 94, 311–318 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Sepe, V. et al. Investigation on bile acid receptor regulators. Discovery of cholanoic acid derivatives with dual G-protein coupled bile acid receptor 1 (GPBAR1) antagonistic and farnesoid X receptor (FXR) modulatory activity. Steroids 105, 59–67 (2016).

    Article  CAS  PubMed  Google Scholar 

  164. Gou, H. et al. Obeticholic acid and 5β-cholanic acid 3 exhibit anti-tumor effects on liver cancer through CXCL16/CXCR6 pathway. Front. Immunol. 13, 1095915 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Wang, D. et al. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 29, 1802–1814.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  166. Haeusler, R. A., Astiarraga, B., Camastra, S., Accili, D. & Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62, 4184–4191 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mancera-Hurtado, Y. et al. A dysregulated bile acids pool is associated with metabolic syndrome and gut microbial dysbiosis in early adolescence. Obesity 31, 2129–2138 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Edenharder, R. Dehydroxylation of cholic acid at C12 and epimerization at C5 and C7 by Bacteroides species. J. Steroid Biochem. 21, 413–420 (1984).

    Article  CAS  PubMed  Google Scholar 

  169. Lucas, L. N. et al. Dominant bacterial phyla from the human gut show widespread ability to transform and conjugate bile acids. mSystems https://doi.org/10.1128/mSystems.00805-21 (2021).

    Article  PubMed  Google Scholar 

  170. Ng, P. Y., Allan, R. N. & Hofmann, A. F. Suitability of [11, 12-3H2]chenodeoxycholic acid and [11, 12-3H2]lithocholic acid for isotope dilution studies of bile acid metabolism in man. J. Lipid Res. 18, 753–758 (1977).

    Article  CAS  PubMed  Google Scholar 

  171. Doden, H. L. & Ridlon, J. M. Microbial hydroxysteroid dehydrogenases: from alpha to omega. Microorganisms 9, 469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Macdonald, I. A., White, B. A. & Hylemon, P. B. Separation of 7α- and 7β-hydroxysteroid dehydrogenase activities from Clostridium absonum ATCC# 27555 and cellular response of this organism to bile acid inducers. J. Lipid Res. 24, 1119–1126 (1983).

    Article  CAS  PubMed  Google Scholar 

  173. Macdonald, I. A. & Sutherland, J. D. Further studies on the bile salt induction of 7α- and 7β-hydroxysteroid dehydrogenases in Clostridium absonum. Biochim. Biophys. Acta 750, 397–403 (1983).

    Article  CAS  PubMed  Google Scholar 

  174. Macdonald, I. A. et al. Metabolism of primary bile acids by Clostridium perfringens. J. Steroid Biochem. 18, 97–104 (1983).

    Article  CAS  PubMed  Google Scholar 

  175. Macdonald, I. A., Jellett, J. F., Mahony, D. E. & Holdeman, L. V. Bile salt 3α- and 12α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl. Env. Microbiol. 37, 992–1000 (1979).

    Article  CAS  Google Scholar 

  176. Macdonald, I. A., Williams, C. N., Mahony, D. E. & Christie, W. M. NAD- and NADP-dependent 7α-hydroxysteroid dehydrogenases from Bacteroides fragilis. Biochim. Biophys. Acta 384, 12–24 (1975).

    Article  CAS  PubMed  Google Scholar 

  177. Hirano, S. & Masuda, N. Characterization of NADP-dependent 7β-hydroxysteroid dehydrogenases from Peptostreptococcus productus and Eubacterium aerofaciens. Appl. Env. Microbiol. 43, 1057–1063 (1982).

    Article  CAS  Google Scholar 

  178. Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mythen, S. M., Devendran, S., Mendez-Garcia, C., Cann, I. & Ridlon, J. M. Targeted synthesis and characterization of a gene cluster encoding NAD(P)H-dependent 3α-, 3β-, and 12α-hydroxysteroid dehydrogenases from Eggerthella CAG:298, a gut metagenomic sequence. Appl. Environ. Microbiol. 84, e02475-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lee, J. Y. et al. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res. 54, 3062–3069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Doden, H. L. et al. Completion of the gut microbial epi-bile acid pathway. Gut Microbes 13, 1–20 (2021).

    Article  PubMed  Google Scholar 

  182. Harris, S. C. et al. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243T. Gut Microbes 9, 523–539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Odermatt, A. et al. Hepatic reduction of the secondary bile acid 7-oxolithocholic acid is mediated by 11β-hydroxysteroid dehydrogenase 1. Biochem. J. 436, 621–629 (2011).

    Article  CAS  PubMed  Google Scholar 

  184. Johnson, J. S. et al. 11β-Hydroxysteroid dehydrogenase-1 deficiency alters the gut microbiome response to Western diet. J. Endocrinol. 232, 273–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Dyson, J. K. et al. Novel therapeutic targets in primary biliary cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 12, 147–158 (2015).

    Article  CAS  PubMed  Google Scholar 

  186. Edenharder, R., Pfutzner, A. & Hammann, R. Characterization of NAD-dependent 3α- and 3β-hydroxysteroid dehydrogenase and of NADP-dependent 7β-hydroxysteroid dehydrogenase from Peptostreptococcus productus. Biochim. Biophys. Acta 1004, 230–238 (1989).

    Article  CAS  PubMed  Google Scholar 

  187. Marschall, H. U. et al. Human liver class I alcohol dehydrogenase γγ isozyme: the sole cytosolic 3β-hydroxysteroid dehydrogenase of iso bile acids. Hepatology 31, 990–996 (2000).

    Article  CAS  PubMed  Google Scholar 

  188. Schmassmann, A. et al. Transport, metabolism, and effect of chronic feeding of lagodeoxycholic acid. A new, natural bile acid. Gastroenterology 99, 1092–1104 (1990).

    Article  CAS  PubMed  Google Scholar 

  189. Doden, H. et al. Metabolism of oxo-bile acids and characterization of recombinant 12α-hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl. Environ. Microbiol. 84, e00235-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Bernstein, H., Bernstein, C., Payne, C. M., Dvorakova, K. & Garewal, H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat. Res. 589, 47–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Bernstein, H. & Bernstein, C. Bile acids as carcinogens in the colon and at other sites in the gastrointestinal system. Exp. Biol. Med. 248, 79–89 (2023).

    Article  CAS  Google Scholar 

  192. Thibaut, M. M. & Bindels, L. B. Crosstalk between bile acid-activated receptors and microbiome in entero-hepatic inflammation. Trends Mol. Med. 28, 223–236 (2022).

    Article  CAS  PubMed  Google Scholar 

  193. Bayerdörffer, E. et al. Increased serum deoxycholic acid levels in men with colorectal adenomas. Gastroenterology 104, 145–151 (1993).

    Article  PubMed  Google Scholar 

  194. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Narushima, S. et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5, 333–339 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Soroosh, P. et al. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation. Proc. Natl Acad. Sci. USA 111, 12163–12168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Hu, X. et al. Sterol metabolism controls TH17 differentiation by generating endogenous RORγ agonists. Nat. Chem. Biol. 11, 141–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. He, Y. J. & You, C. G. The potential role of gut microbiota in the prevention and treatment of lipid metabolism disorders. Int. J. Endocrinol. 2020, 8601796 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Francis, G. A., Fayard, E., Picard, F. & Auwerx, J. Nuclear receptors and the control of metabolism. Annu. Rev. Physiol. 65, 261–311 (2003).

    Article  CAS  PubMed  Google Scholar 

  202. Lefebvre, P., Cariou, B., Lien, F., Kuipers, F. & Staels, B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol. Rev. 89, 147–191 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Gonzalez, F. J., Jiang, C. & Patterson, A. D. An intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 151, 845–859 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Gonzalez, F. J., Jiang, C., Xie, C. & Patterson, A. D. Intestinal farnesoid X receptor signaling modulates metabolic disease. Dig. Dis. 35, 178–184 (2017).

    Article  PubMed  Google Scholar 

  205. Song, C., Wang, B., Tan, J., Zhu, L. & Lou, D. Discovery of tauroursodeoxycholic acid biotransformation enzymes from the gut microbiome of black bears using metagenomics. Sci. Rep. 7, 45495 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Vital, M., Rud, T., Rath, S., Pieper, D. H. & Schluter, D. Diversity of bacteria exhibiting bile acid-inducible 7α-dehydroxylation genes in the human gut. Comput. Struct. Biotechnol. J. 17, 1016–1019 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Wells, J. E. & Hylemon, P. B. Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl. Env. Microbiol. 66, 1107–1113 (2000).

    Article  CAS  Google Scholar 

  208. Huijghebaert, S. M., Mertens, J. A. & Eyssen, H. J. Isolation of a bile salt sulfatase-producing Clostridium strain from rat intestinal microflora. Appl. Env. Microbiol. 43, 185–192 (1982).

    Article  CAS  Google Scholar 

  209. Imperato, T. J., Wong, C. G., Chen, L. J. & Bolt, R. J. Hydrolysis of lithocholate sulfate by Pseudomonas aeruginosa. J. Bacteriol. 130, 545–547 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sorrentino, G. et al. Bile acids signal via TGR5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 159, 956–968.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  211. Federici, S. et al. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 185, 2879–2898.e24 (2022).

    Article  CAS  PubMed  Google Scholar 

  212. Woo, A. Y. M. et al. Targeting the human gut microbiome with small-molecule inhibitors. Nat. Rev. Chem. 7, 319–339 (2023).

    Article  CAS  PubMed  Google Scholar 

  213. Li, D. K. et al. Inhibition of microbial deconjugation of micellar bile acids protects against intestinal permeability and liver injury. Sci. Adv. 8, eabo2794 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Jin, W. B. et al. Genetic manipulation of gut microbes enables single-gene interrogation in a complex microbiome. Cell 185, 547–562.e22 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Parasar, B. et al. Chemoproteomic profiling of gut microbiota-associated bile salt hydrolase activity. ACS Cent. Sci. 5, 867–873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ivanov, I. I., Tuganbaev, T., Skelly, A. N. & Honda, K. T cell responses to the microbiota. Ann. Rev. Immunol. 40, 559–587 (2022).

    Article  CAS  Google Scholar 

  217. Sun, H. et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis. Gut 72, 1664–1677 (2023).

    Article  CAS  PubMed  Google Scholar 

  218. Neuman, H., Debelius, J. W., Knight, R. & Koren, O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 39, 509–521 (2015).

    Article  PubMed  Google Scholar 

  219. Plottel, C. S. & Blaser, M. J. Microbiome and malignancy. Cell Host Microbe 10, 324–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Ly, L. K., Doden, H. L. & Ridlon, J. M. Gut feelings about bacterial steroid-17,20-desmolase. Mol. Cell Endocrinol. 525, 111174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ly, L. K. et al. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J. Steroid Biochem. Mol. Biol. 199, 105567 (2020).

    Article  CAS  PubMed  Google Scholar 

  222. Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 341, 295–298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ridlon, J. M. et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J. Lipid Res. 54, 2437–2449 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Feighner, S. D., Bokkenheuser, V. D., Winter, J. & Hylemon, P. B. Characterization of a C21 neutral steroid hormone transforming enzyme, 21-dehydroxylase, in crude cell extracts of Eubacterium lentum. Biochim. Biophys. Acta 574, 154–163 (1979).

    Article  CAS  PubMed  Google Scholar 

  226. Oliveira, R. A. & Pamer, E. G. Assembling symbiotic bacterial species into live therapeutic consortia that reconstitute microbiome functions. Cell Host Microbe 31, 472–484 (2023).

    Article  CAS  PubMed  Google Scholar 

  227. Louie, T. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. JAMA 329, 1356–1366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Britton, G. J. & Faith, J. J. Causative microbes in host-microbiome interactions. Annu. Rev. Microbiol. 75, 223–242 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Hirano, S. & Masuda, N. Transformation of bile acids by Eubacterium lentum. Appl. Env. Microbiol. 42, 912–915 (1981).

    Article  CAS  Google Scholar 

  230. Pedersen, K. J. et al. Eggerthella lenta DSM 2243 alleviates bile acid stress response in Clostridium ramosum and Anaerostipes caccae by transformation of bile acids. Microorganisms 10, 2025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Bokkenheuser, V. D. et al. New markers for Eubacterium lentum. Appl. Env. Microbiol. 37, 1001–1006 (1979).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express sincere appreciation to Steven Daniel (University of Illinois, USA) for his assistance in editing and offering constructive comments on this review. They acknowledge financial support from National Institutes of Health grants (R01 CA204808-01 (J.M.R. and H.R.G.), R01 GM134423-01A1 (J.M.R.), R01 GM145920-01 (J.M.R.), R03 AI147127-01A1 (J.M.R.)) as well as UIUC Department of Animal Sciences Matchstick grant and Hatch ILLU-538-916 (J.M.R.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jason M. Ridlon or H. Rex Gaskins.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks John Chiang, Wei Jia and Robert Quinn for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ridlon, J.M., Gaskins, H.R. Another renaissance for bile acid gastrointestinal microbiology. Nat Rev Gastroenterol Hepatol 21, 348–364 (2024). https://doi.org/10.1038/s41575-024-00896-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-024-00896-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing