Skip to main content
Log in

Defect engineered nickel hydroxide nanosheets for advanced pseudocapacitor electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

While the past years have witnessed great achievement in pseudocapacitors, the inauguration of electrode materials of high-performance still remains a formidable challenge. Moreover, the capacity and rate capability of the electrode depends largely on its electrical conductivity, which ensures fast charge transfer kinetics in both the grain bulk and grain boundaries. Here, nickel hydroxides with oxygen vacancies are facilely fabricated via a hydrothermal method. The active materials exhibit a high specific capacitance of 3250 F·g−1 and a high areal of capacitance of 14.98 F·cm−2 at 4.6 mA·cm−2. The asymmetric supercapacitor device based on our material delivers a high energy density of ∼ 71.6 Wh·kg−1 and a power density of ∼ 17,300 W·kg−1 and could retain ∼ 95% of their initial capacitance even after 30,000 cycles. In addition, the defect-rich hydroxides demonstrate higher electrical conductivity as well as dielectric constant, which is responsible for the superior pseudocapacitive performance. Our new scientific strategy in terms of taking the advantages of oxygen vacancies might open up new opportunities for qualified pseudocapacitive materials of overall high performances not only for nickel hydroxides but also for other metal hydroxides/oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin. Science 2014, 343, 1210–1211.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Yan, J.; Li, S. H.; Lan, B. B.; Wu, Y. C.; Lee, P. S. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Adv. Funct. Mater. 2020, 30, 1902564.

    Article  CAS  Google Scholar 

  3. Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

    Article  CAS  PubMed  Google Scholar 

  4. Kaempgen, M.; Chan, C. K.; Ma, J.; Cui, Y.; Gruner, G. Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 2009, 9, 1872–1876.

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Zhang, J. H.; Zhang, G. X.; Zhou, T.; Sun, S. H. Recent developments of planar micro-supercapacitors: Fabrication, properties, and applications. Adv. Funct. Mater. 2020, 30, 1910000.

    Article  CAS  Google Scholar 

  6. Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Zhu, Q. C.; Zhao, D. Y.; Cheng, M. Y.; Zhou, J. Q.; Owusu, K. A.; Mai, L.; Yu, Y. A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019, 9, 1901081.

    Article  Google Scholar 

  8. Liang, G. J.; Li, X. L.; Wang, Y. B.; Yang, S.; Huang, Z. D.; Yang, Q.; Wang, D. H.; Dong, B. B.; Zhu, M. S.; Zhi, C. Y. Building durable aqueous K-ion capacitors based on MXene family. Nano Res. Energy 2022, 1, 9120002.

    Article  Google Scholar 

  9. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Liang, J.; Tian, B.; Li, S. Q.; Jiang, C. Z.; Wu, W. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv. Energy Mater. 2020, 10, 2000022.

    Article  CAS  Google Scholar 

  11. Gu, Y. H.; Lu, Z. Y.; Chang, Z.; Liu, J. F.; Lei, X. D.; Li, Y. P.; Sun, X. M. NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. J. Mater. Chem. A 2013, 1, 10655–10661.

    Article  CAS  Google Scholar 

  12. Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

    Article  CAS  PubMed  Google Scholar 

  13. Tang, Z.; Tang, C. H.; Gong, H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv. Funct. Mater. 2012, 22, 1272–1278.

    Article  CAS  Google Scholar 

  14. Li, K. Z.; Zhao, B. C.; Bai, J.; Ma, H. Y.; Fang, Z. T.; Zhu, X. B.; Sun, Y. P. A high-energy-density hybrid supercapacitor with P-Ni(OH)2@Co(OH)2 core–shell heterostructure and Fe2O3 nanoneedle arrays as advanced integrated electrodes. Small 2020, 16, 2001974.

    Article  CAS  Google Scholar 

  15. Wang, Y. C.; Zhou, T.; Jiang, K.; Da, P. M.; Peng, Z.; Tang, J.; Kong, B.; Cai, W. B.; Yang, Z. Q.; Zheng, G. F. Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Adv. Energy Mater. 2014, 4, 1400696.

    Article  Google Scholar 

  16. Wang, Y.; Yin, Z. L.; Li, X. H.; Guo, H. J.; Zhang, D. C.; Wang, Z. X. Smartly tailored Co(OH)2-Ni(OH)2 heterostucture on nickel foam as binder-free electrode for high-energy hybrid capacitors. Electrochim. Acta 2019, 309, 140–147.

    Article  CAS  ADS  Google Scholar 

  17. Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184.

    Article  CAS  Google Scholar 

  18. Gu, Y. H.; Bao, A.; Wang, X. Y.; Chen, Y. Z.; Dong, L.; Liu, X.; Pan, H. J.; Li, Y.; Qi, X. W. Engineering the oxygen vacancies of rocksalt-type high-entropy oxides for enhanced electrocatalysis. Nanoscale 2022, 14, 515–524.

    Article  CAS  PubMed  Google Scholar 

  19. Mao, Y. Y.; Xie, J. Y.; Liu, H.; Hu, W. B. Hierarchical core–shell Ag@Ni(OH)2@PPy nanowire electrode for ultrahigh energy density asymmetric supercapacitor. Chem. Eng. J. 2021, 405, 126984.

    Article  CAS  Google Scholar 

  20. Dong, B.; Li, W.; Huang, X. X.; Ali, Z.; Zhang, T.; Yang, Z. Y.; Hou, Y. L. Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 2019, 55, 37–41.

    Article  CAS  ADS  Google Scholar 

  21. Li, S. L.; Zhang, J. Q.; Li, Y. N.; Fan, P. X.; Wu, M. B. Revisiting N, S co-doped carbon materials with boosted electrochemical performance in sodium-ion capacitors: The manipulation of internal electric field. Nano Res. Energy 2024, 3, e9120098.

    Article  Google Scholar 

  22. Zhang, Y.; Zhao, Y. F.; An, W. D.; Xing, L.; Gao, Y. F.; Liu, J. R. Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J. Mater. Chem. A 2017, 5, 10039–10047.

    Article  CAS  Google Scholar 

  23. Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, S. Y.; Cheng, B.; Yu, J. G.; Jiang, C. J. Hierarchical Pt/MnO2-Ni(OH)2 hybrid nanoflakes with enhanced room-temperature formaldehyde oxidation activity. ACS Sustain. Chem. Eng. 2018, 6, 12481–12488.

    Article  CAS  Google Scholar 

  25. Tong, Y.; Chen, P. Z.; Zhou, T. P.; Xu, K.; Chu, W. S.; Wu, C. Z.; Xie, Y. A bifunctional hybrid electrocatalyst for oxygen reduction and evolution: Cobalt oxide nanoparticles strongly coupled to B,N-decorated graphene. Angew. Chem., Int. Ed. 2017, 56, 7121–7125.

    Article  CAS  Google Scholar 

  26. Kim, N.; Lim, D.; Choi, Y.; Shim, S. E.; Baeck, S. H. Hexagonal β-Ni(OH)2 nanoplates with oxygen vacancies as efficient catalysts for the oxygen evolution reaction. Electrochim. Acta 2019, 324, 134868.

    Article  CAS  Google Scholar 

  27. Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C-N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

    Article  CAS  Google Scholar 

  28. Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.

    Article  Google Scholar 

  29. Ganduglia-Pirovano, M. V.; Da Silva, J. L. F.; Sauer, J. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111). Phys. Rev. Lett. 2009, 102, 026101.

    Article  PubMed  ADS  Google Scholar 

  30. Gu, Y. H.; Wang, X. Y.; Bao, A.; Dong, L.; Zhang, X. Y.; Pan, H. J.; Cui, W. Q.; Qi, X. W. Enhancing electrical conductivity of single-atom doped Co3O4 nanosheet arrays at grain boundary by phosphor doping strategy for efficient water splitting. Nano Res. 2022, 15, 9511–9519.

    Article  CAS  ADS  Google Scholar 

  31. Ji, Q. Q.; Bi, L.; Zhang, J. T.; Cao, H. J.; Zhao, X. S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428.

    Article  CAS  Google Scholar 

  32. Qin, H. Y.; Ye, Y. K.; Li, J. H.; Jia, W. Q.; Zheng, S. Y.; Cao, X. J.; Lin, G. L.; Jiao, L. F. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv. Funct. Mater. 2023, 33, 2209698.

    Article  CAS  Google Scholar 

  33. Zhang, H. W.; Liu, S. X.; Hu, E. L.; Yang, Y. F.; Zhang, H. M.; Zhu, Y. T.; Yan, L. J.; Gao, X. H.; Zhang, J.; Lin, Z. Iron-doped Ag/Ni2(CO3)(OH)2 hierarchical microtubes for highly efficient water oxidation. Carbon Energy 2022, 4, 939–949.

    Article  CAS  Google Scholar 

  34. Gu, Y. H.; Zhang, X. Y.; Du, Q.; Li, Y.; Zhang, M.; Pan, H. J.; Qi, X. W. Electrochemical tuning induced oxygen vacancies for the photoluminescence enhancement. Ceram. Int. 2020, 46, 4071–4078.

    Article  CAS  Google Scholar 

  35. Bernard, M. C.; Cortes, R.; Keddam, M.; Takenouti, H.; Bernard, P.; Senyarich, S. Structural defects and electrochemical reactivity of β-Ni(OH)2. J. Power Sources 1996, 63, 247–254.

    Article  CAS  ADS  Google Scholar 

  36. Liu, L. Z.; Wu, X. L.; Li, T. H.; Shen, J. C. Correlation of the 755–778 cm−1 Raman mode with oxygen vacancies in tin oxide nanostructures. Appl. Surf. Sci. 2015, 347, 265–268.

    Article  CAS  ADS  Google Scholar 

  37. Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, X. M. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 2011, 47, 9651–9653.

    Article  CAS  Google Scholar 

  38. Zhu, G. X.; Xi, C. Y.; Shen, M. Q.; Bao, C. L.; Zhu, J. Nanosheet-based hierarchical Ni2(CO3)(OH)2 microspheres with weak crystallinity for high-performance supercapacitor. ACS Appl. Mater. Interfaces 2014, 6, 17208–17214.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J. W.; Ko, J. M.; Kim, J. D. Hierarchical microspheres based on α-Ni(OH)2 nanosheets intercalated with different anions: Synthesis, anion exchange, and effect of intercalated anions on electrochemical capacitance. J. Phys. Chem. C 2011, 115, 19445–19454.

    Article  CAS  Google Scholar 

  40. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.

    Article  Google Scholar 

  41. Luo, H. X.; Liu, Z. Y.; Chao, L. M.; Wu, X. C.; Lei, X. D.; Chang, Z.; Sun, X. M. Synthesis of hierarchical porous N-doped sandwichtype carbon composites as high-performance supercapacitor electrodes. J. Mater. Chem. A 2015, 3, 3667–3675.

    Article  CAS  Google Scholar 

  42. Yang, Y.; Li, L.; Ruan, G. D.; Fei, H. L.; Xiang, C. S.; Fan, X. J.; Tour, J. M. Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 2014, 8, 9622–9628.

    Article  CAS  PubMed  Google Scholar 

  43. Xu, L. L.; Zhao, H. Y.; Sun, M. Z.; Huang, B. L.; Wang, J. W.; Xia, J. L.; Li, N.; Yin, D. D.; Luo, M.; Luo, F. et al. Oxygen vacancies on layered niobic acid that weaken the catalytic conversion of polysulfides in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 11491–11496.

    Article  CAS  Google Scholar 

  44. Sinclair, D. C.; Adams, T. B.; Morrison, F. D.; West, A. R. CaCu3Ti4O12: One-step internal barrier layer capacitor. Appl. Phys. Lett. 2002, 80, 2153–2155.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 51972048), Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province (No. 22567627H), the National Key Research and Development Program of China (No. 2022YFB3706300), and the National Natural Science Foundation of China (No. U23A20605).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaohang Gu, Haijun Pan or Xiwei Qi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Zhang, Y., Wang, X. et al. Defect engineered nickel hydroxide nanosheets for advanced pseudocapacitor electrodes. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6473-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6473-0

Keywords

Navigation