Skip to main content
Log in

Measurements of biologically effective solar radiation using erythemal weighted broadband meters

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this paper, we describe conversion factors (CF) for the calculation of biologically effective irradiances (BEI) from erythemal irradiance for three effects: photosynthesis of previtamin D3, psoriasis healing, and inactivation of the SARS-Cov-2 virions. CFs were empirically derived from measurements of spectral solar ultraviolet (UV) radiation during all sky conditions at four mid-latitude sites in the Northern Hemisphere, namely Aosta, Belsk, Reading, and San Diego. These CFs were found to depend on solar zenith angle (SZA) and total column ozone, but are largely independent (within ± 5% for SZA < 60°) of local conditions such as surface albedo, visibility and other local atmospheric patterns. The values of these empirical CFs are consistent with analytical CFs derived with radiative transfer calculations (model FastRT) for clear-sky and overcast conditions. To validate these analytical CFs, one-hour radiant exposures for the three biological effects were calculated from erythemal measurements at Reading between 2012 and 2021 and compared with similar exposures calculated directly from the spectral UV measurements. The two datasets agreed within 10% for SZA < 65°, demonstrating the utility of the conversion method. These results suggest that the proposed analytical CFs can be used with confidence to estimate radiant exposures for the three biological effects from measurements of the UV Index at any northern mid-latitude site.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The spectral data for Aosta, Reading and San Diego is freely available from the World Ozone and Ultraviolet Radiation Data Centre (WOUDC) at the website https://woudc.org. The Belsk spectral data is available at https://github.com/BelskSpectraUV/brewer.

References

  1. Madronich, S., McKenzie, R. L., Björn, L. O., & Caldwell, M. M. (1998). Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Journal of Photochemistry and Photobiology B: Biology, 46, 5–19. https://doi.org/10.1016/S1011-1344(98)00182-1

    Article  CAS  PubMed  Google Scholar 

  2. Moreno, J. C., Serrano, M. A., Cañada, J., Gurrea, G., & Utrillas, M. P. (2014). Effect of the relative optical air mass and the clearness index on solar erythemal UV irradiance. Journal of Photochemistry and Photobiology B: Biology, 138, 92–98. https://doi.org/10.1016/j.jphotobiol.2014.05.005

    Article  CAS  PubMed  Google Scholar 

  3. Parisi, A. V., Downs, N., Turner, J., & Amar, A. (2016). Online educative activities for solar ultraviolet radiation based on measurements of cloud amount and solar exposures. Journal of Photochemistry and Photobiology B: Biology, 162, 434–440. https://doi.org/10.1016/j.jphotobiol.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  4. Fountoulakis, I., Diémoz, H., Siani, A.-M., Laschewski, G., Filippa, G., Arola, A., Bais, A. F., De Backer, H., Lakkala, K., Webb, A. R., De Bock, V., Karppinen, T., Garane, K., Kapsomenakis, J., Koukouli, M.-E., & Zerefos, C. S. (2019). Solar UV irradiance in a changing climate: trends in Europe and the significance of spectral monitoring in Italy. Environments, 7, 1. https://doi.org/10.3390/environments7010001

    Article  Google Scholar 

  5. Bilbao, J., & de Migue, A. (2020). Erythemal solar irradiance, UVER, and UV index from ground-based data in central Spain. Applied Sciences, 10, 6589. https://doi.org/10.3390/app10186589

    Article  CAS  Google Scholar 

  6. Elliott, T. M., Gordon, L. G., Webb, A., Kift, R., Foeglein, A., & Neale, R. E. (2023). Making the sunshine vitamin—how much sun exposure is needed to maintain 25-hydroxy vitamin D concentration? Photochemistry and Photobiology, 00, 1–10. https://doi.org/10.1111/php.13854

    Article  CAS  Google Scholar 

  7. Young, A. R. (2006). Acute effects of UVR on human eyes and skin. Progress in Biophysics and Molecular Biology, 92(1), 80–85. https://doi.org/10.1016/j.pbiomolbio.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  8. Holick, M. F., & Chen, T. C. (2008). Vitamin D deficiency: a worldwide problem with health consequences. The American Journal of Clinical Nutrition, 87, 1080S-1086S. https://doi.org/10.1093/ajcn/87.4.1080S

    Article  CAS  PubMed  Google Scholar 

  9. Liu, D., Fernandez, B. O., Hamilton, A., Lang, N. N., Gallagher, J. M., Newby, D. E., Feelisch, M., & Weller, R. B. (2014). UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. Journal of Investigative Dermatology, 134, 1839–1846. https://doi.org/10.1038/jid.2014.27

    Article  CAS  PubMed  Google Scholar 

  10. Bernhard, G. H., Madronich, S., Lucas, R. M., Byrne, S. N., Schikowski, T., & Neale, R. E. (2023). Linkages between COVID-19, solar UV radiation, and the Montreal protocol. Photochemical & Photobiological Sciences, 22, 991–1009. https://doi.org/10.1007/s43630-023-00373-w

    Article  CAS  Google Scholar 

  11. Zoran, M. A., Savastru, R. S., Savastru, D. M., & Tautan, M. N. (2022). Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: a time series study. Environmental Research, 212D, 113437. https://doi.org/10.1016/j.envres.2022.113437

    Article  CAS  Google Scholar 

  12. Robertson, D.F. (1972) Solar Ultraviolet Radiation in Relation to Human Sunburn and Skin Cancer, Ph.D. thesis, University of Queensland, Brisbane, Australia. https://doi.org/10.14264/uql.2015.484.

  13. Berger, D. S., & Urbach, F. (1982). A climatology of sunburning ultraviolet radiation. Photochemistry and Photobiology, 35, 187–192. https://doi.org/10.1111/j.1751-1097.1982.tb03830.x

    Article  CAS  PubMed  Google Scholar 

  14. Vanicek, K., Frei, T., Litynska, Z., & Schmalwieser, A. (2000). UV-index for the public A guide for publication and interpretation of solar UV index forecasts for the public. Brussels: Prepared by the Working Group 4 of the COST-713 Action “UVB forecasting” Report; European Union.

    Google Scholar 

  15. World Health Organisation (WHO). (2002). Global solar UV index: a practical user guide. WHO.

    Google Scholar 

  16. Schmalwieser, A. W., Eschenbacher, S., & Schreder, J. (2022). UV-Biometer—the usage of erythemal weighted broadband meters for other biological effects. Journal of Photochemistry and Photobiology B: Biology, 230, 112442. https://doi.org/10.1016/j.jphotobiol.2022.112442

    Article  CAS  PubMed  Google Scholar 

  17. Czerwińska, A., & Krzyścin, J. (2020). Numerical estimations of the daily amount of skin-synthesized vitamin D by pre-school children in Poland. Journal of Photochemistry and Photobiology B: Biology, 208, 111898. https://doi.org/10.1016/j.jphotobiol.2020.111898

    Article  CAS  PubMed  Google Scholar 

  18. Czerwińska, A., & Krzyścin, J. (2020). Analysis of measurements and modelling of the biologically active UV solar radiation for selected sites in Poland—assessment of photo-medical effects. Publications of the Institute of Geophysics, Polish Academy of Sciences, 428, 111. https://doi.org/10.2517/InstGeoph_PAS_Publs-2020-002

    Article  Google Scholar 

  19. Madronich, S. (1993). The atmosphere and UV-B radiation at ground level. In A. R. Young, J. Moan, L. O. Björn, & W. Nultsch (Eds.), Environmental UV photobiology. Boston: Springer.

    Google Scholar 

  20. Fountoulakis, I., Diémoz, H., Siani, A. M., Hülsen, G., & Gröbner, J. (2020). Monitoring of solar spectral ultraviolet irradiance in Aosta, Italy. Earth System Science Data, 12, 2787–2810. https://doi.org/10.5194/essd-12-2787-2020

    Article  Google Scholar 

  21. Gröbner, J., & Sperfeld, P. (2005). Direct traceability of the portable QASUME irradiance scale to the primary irradiance standard of the PTB. Metrologia, 42, 134–139. https://doi.org/10.1088/0026-1394/42/2/008

    Article  Google Scholar 

  22. Hülsen, G., Gröbner, J., Nevas, S., Sperfeld, P., Egli, L., Porrovecchio, G., & Smid, M. (2016). Traceability of solar UV measurements using the Qasume reference spectroradiometer. Applied Optics, 55, 7265–7275. https://doi.org/10.1364/AO.55.007265

    Article  PubMed  Google Scholar 

  23. Fioletov, V. E., Kerr, J. B., McElroy, C. T., Wardle, D. I., Savastiouk, V., & Grajnar, T. S. (2005). The Brewer reference triad. Geophysical Research Letters, 32, L20805. https://doi.org/10.1029/2005GL024244

    Article  Google Scholar 

  24. Slaper, H., Reinen, H. A. J. M., Blumthaler, M., Huber, M., & Kuik, F. (1995). Comparing ground level spectrally resolved UV measurements from various instruments: a technique resolving effects of wavelength shifts and slit width. Geophysical Research Letters, 22, 2721–2724. https://doi.org/10.1029/95GL02824

    Article  Google Scholar 

  25. Kazantzidis, A., Smedley, A., Kift, R., Rimmer, J., Berry, J. L., Rhodes, L. E., & Webb, A. R. (2015). A modeling approach to determine how much UV radiation is available across the UK and Ireland for health risk and benefit studies. Photochemical & Photobiological Sciences, 14, 1073–1081. https://doi.org/10.1039/c5pp00008d

    Article  CAS  Google Scholar 

  26. Bernhard, G. H., McKenzie, R. L., Lantz, K., & Stierle, S. (2022). Updated analysis of data from Palmer Station, Antarctica (64° S), and San Diego, California (32° N), confirms large effect of the Antarctic ozone hole on UV radiation. Photochemical & Photobiological Sciences, 21, 373–384. https://doi.org/10.1007/s43630-022-00178-3

    Article  CAS  Google Scholar 

  27. Bernhard, G., McKenzie, R. L., Kotkamp, M., Wood, S., Booth, C. R., Ehramjian, J. C., Johnston, P., & Nichol, S. E. (2008). Comparison of ultraviolet spectroradiometers in Antarctica. Journal of Geophysical Research, 113, D14310. https://doi.org/10.1029/2007JD009489

    Article  Google Scholar 

  28. Commission Internationale de l’Eclairage (CIE). (2019). Erythema reference action spectrum and standard erythema dose. Vienna: CIE Central Bureau.

    Google Scholar 

  29. Commission Internationale de l’Eclairage (CIE). (2006). Action spectrum for the production of previtamin D3 in human skin. Vienna: CIE.

    Google Scholar 

  30. Krzyścin, J. W., Jarosławski, J., Rajewska-Wiech, B., Sobolewski, P. S., Narbutt, J., Lesiak, A., & Pawlaczyk, M. (2012). Effectiveness of heliotherapy for psoriasis clearance in low and mid-latitudinal regions: a theoretical approach. Journal of Photochemistry and Photobiology B: Biology, 115, 35–41. https://doi.org/10.1016/j.jphotobiol.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  31. Biasin, M., Strizzi, S., Bianco, A., Macchi, A., Utyro, O., Pareschi, G., Loffreda, A., Cavalleri, A., Lualdi, M., Trabattoni, D., Tacchetti, C., Mazza, D., & Clerici, M. (2022). UV and violet light can neutralize SARS-CoV-2 infectivity. Journal of Photochemistry and Photobiology, 10, 100107. https://doi.org/10.1016/j.jpap.2021.100107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schmalwieser, A. W., Gröbner, J., Blumthaler, M., Klotz, B., De Backer, H., Bolsée, D., Werner, R., Tomsic, D., Metelka, L., Eriksen, P., Jepsen, N., Aun, M., Heikkilä, A., Duprat, T., Sandmann, H., Weiss, T., Bais, A., Toth, Z., Siani, A. M., … O’Hagan, J. (2017). UV index monitoring in Europe. Photochemical & Photobiological Sciences, 16, 1349–1370. https://doi.org/10.1039/c7pp00178a

    Article  CAS  Google Scholar 

  33. Engelsen, O., & Kylling, A. (2005). Fast simulation tool for ultraviolet radiation at the earth’s surface. Optical Engineering, 44(4), 041012. https://doi.org/10.1117/1.1885472

    Article  Google Scholar 

  34. Stamnes, K., Tsay, S. C., Wiscombe, W., & Jayaweera, K. (1988). A numerically stable algorithm for discrete ordinate method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 27, 2502–2509. https://doi.org/10.1364/AO.27.002502

    Article  CAS  PubMed  Google Scholar 

  35. Dahlback, A., & Stamnes, K. (1991). A new spherical model for computing the radiation field available for photolysis and heating at twilight. Planetary and Space Science, 39, 671–683. https://doi.org/10.1016/0032-0633(91)90061-E

    Article  Google Scholar 

  36. Iqbal, M. (1983). An introduction to solar radiation. Canada: Academic Press.

    Google Scholar 

  37. Collow A, Bosilovich M, Dezfuli A, Lucchesi R. (2020). File Specification for MERRA-2 Climate Statistics Products. GMAO Office Note No. 19 (Version 1.0), 15 pp. http://gmao.gsfc.nasa.gov/pubs/office_notes. Accessed 18th October 2023.

  38. Majewski, G., Rogula-Kozłowska, W., Czechowski, P. O., Badyda, A., & Brandyk, A. (2015). The impact of selected parameters on visibility: first results from a long-term campaign in Warsaw, Poland. Atmosphere, 6, 1154–1174. https://doi.org/10.3390/atmos6081154

    Article  Google Scholar 

  39. Singh, A., Bloss, W. J., & Pope, F. D. (2017). 60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility. Atmospheric Chemistry and Physics, 17, 2085–2101. https://doi.org/10.5194/acp-17-2085-2017

    Article  CAS  Google Scholar 

  40. Fitzpatrick, T. B. (1988). The validity and practicality of sun-reactive skin types I through VI. Archives of Dermatology, 124(6), 869–871. https://doi.org/10.1001/archderm.1988.01670060015008

    Article  CAS  PubMed  Google Scholar 

  41. Krzyścin, J. W., Guzikowski, J., & Rajewska-Więch, B. (2016). Optimal vitamin D3 daily intake of 2000IU inferred from modeled solar exposure of ancestral humans in Northern Tanzania. Journal of Photochemistry and Photobiology B: Biology, 159, 101–105. https://doi.org/10.1016/j.jphotobiol.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  42. Lund, C. C., & Browder, N. C. (1944). The estimation of areas of burns. Surgery, Gynecology & Obstetrics, 79, 352–358.

    Google Scholar 

  43. Krzyścin, J. W., Narbutt, J., Lesiak, A., Jarosławski, J., Sobolewski, P. S., Rajewska-Więch, B., Szkop, A., Wink, J., & Czerwińska, A. (2014). Perspectives of the antipsoriatic heliotherapy in Poland. Journal of Photochemistry and Photobiology B: Biology, 140, 111–119. https://doi.org/10.1016/j.jphotobiol.2014.07.017

    Article  CAS  PubMed  Google Scholar 

  44. Nicastro, F., Sironi, G., Antonello, E., Bianco, A., Biasin, M., Brucato, J. R., Ermolli, I., Pareschi, G., Salvati, M., Tozzi, P., Trabattoni, D., & Clerici, M. (2021). Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2. Scientific Reports, 11, 14805. https://doi.org/10.1038/s41598-021-94417-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Backer, H., Koepke, P., Bais, A., de Cabo, X., Frei, T., Gillotay, D., Haite, C., Heikkilä, A., Kazantzidis, A., Koskela, T., Kyrö, E., Lapeta, B., Lorente, J., Masson, K., Mayer, B., Plets, H., Redondas, A., Renaud, A., Schauberger, G., … Vanicek, K. (2001). Comparison of measured and modelled UV indices for the assessment of health risks. Met Apps, 8, 267–277. https://doi.org/10.1017/S1350482701003024

    Article  Google Scholar 

  46. Brogniez, C., Doré, J.-F., Auriol, F., Cesarini, P., Minvielle, F., Deroo, C., Catalfamo, M., Metzger, J.-M., & Da Conceicao, P. (2021). Erythemal and vitamin D weighted solar UV dose-rates and doses estimated from measurements in mainland France and on Réunion Island. Journal of Photochemistry and Photobiology B: Biology, 225, 112330. https://doi.org/10.1016/j.jphotobiol.2021.112330

    Article  CAS  PubMed  Google Scholar 

  47. Czerwińska, A. E., Krzyścin, J. W., Jarosławski, J., & Posyniak, M. (2016). Effects of urban agglomeration on surface-UV doses: a comparison of Brewer measurements in Warsaw and Belsk, Poland, for the period 2013–2015. Atmospheric Chemistry and Physics, 16, 13641–13651. https://doi.org/10.5194/acp-16-13641-2016

    Article  CAS  Google Scholar 

  48. Young, A. R., Morgan, K. A., Harrison, G. I., Lawrence, K. P., Petersen, B., Wulf, H. C., & Philipsen, P. A. (2021). A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo. PNAS, 118(40), e2015867118. https://doi.org/10.1073/pnas.2015867118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hülsen, G., & Gröbner, J. (2007). Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance. Applied Optics, 46(23), 5877–5886. https://doi.org/10.1364/AO.46.005877

    Article  PubMed  Google Scholar 

Download references

Funding

This work was financed by the Institute of Geophysics of the Polish Academy of Sciences with a subsidy from the Ministry of Education and Science in Poland and the Chief Inspectorate of Environmental Protection under grant GIOŚ/31/2023/DMŚ/NFOŚiGW.

Author information

Authors and Affiliations

Authors

Contributions

Credit author statement (A. Czerwińska – AC, J. Krzyścin – JK): AC, JK Conceptualization; AC, JK Data curation; AC, JK Formal analysis; AC, JK Funding acquisition; AC, JK Investigation; AC Methodology; JK Project administration; AC, JK Resources; AC Software; JK Supervision; AC, JK Validation; AC Visualization; AC, JK Roles/Writing—original draft; and AC, JK Writing—review & editing.

Corresponding author

Correspondence to Agnieszka Czerwińska.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 817 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czerwińska, A., Krzyścin, J. Measurements of biologically effective solar radiation using erythemal weighted broadband meters. Photochem Photobiol Sci 23, 479–492 (2024). https://doi.org/10.1007/s43630-023-00532-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-023-00532-z

Keywords

Navigation