skip to main content
survey

Blockchain Data Storage Optimisations: A Comprehensive Survey

Published:09 April 2024Publication History
Skip Abstract Section

Abstract

Blockchain offers immutability, transparency, and security in a decentralised way for many applications, including finance, supply chain, and the Internet of Things (IoT). Due to its popularity and widespread adoption, it has started to process an enormous number of transactions, placing an ever-growing demand for storage. As the technology gains more popularity, the storage requirements of blockchain will increase, necessitating storage optimisation solutions. Proposed solutions for blockchain storage efficiency range from reducing the degree of data replication to redacting or compressing data. Each of these storage optimisation categories involves a complex interplay with the timing of blockchain data processing and mining, yet no existing survey analyses these dimensions. This article surveys the state-of-the-art blockchain storage optimisations and categorises them into replication-based, redaction-based, and content-based optimisations. Replication-based optimisations focus on reducing duplication of blockchain data shared among participants after committing data on the blockchain ledger. Redaction-based optimisations allow users to modify or delete data already committed on the ledger in various ways, while content-based optimisations compress data before or after committing it to the ledger. We analyse and evaluate these solutions in the aspects of security, decentralisation, and scalability. We present the advantages and disadvantages of the existing blockchain storage optimisations and comprehensively compare them. Additionally, we discuss the opportunities and challenges for future work to optimise blockchain storage.

REFERENCES

  1. [1] Altarawneh Amani, Herschberg Tom, Medury Sai, Kandah Farah, and Skjellum Anthony. 2020. Buterin’s scalability trilemma viewed through a state-change-based classification for common consensus algorithms. In 10th Annual Computing and Communication Workshop and Conference (CCWC’20). 07270736. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  2. [2] Ateniese Giuseppe, Magri Bernardo, Venturi Daniele, and Andrade Ewerton. 2017. Redactable blockchain–or–rewriting history in Bitcoin and friends. In IEEE European Symposium on Security and Privacy (EuroS&P’17). IEEE, 111126.Google ScholarGoogle Scholar
  3. [3] Barbàra Fadi and Schifanella Claudio. 2022. BxTB: Cross-chain exchanges of Bitcoins for all Bitcoin wrapped tokens. In 4th International Conference on Blockchain Computing and Applications (BCCA’22). IEEE, 143150.Google ScholarGoogle ScholarCross RefCross Ref
  4. [4] Beikverdi Alireza and Song JooSeok. 2015. Trend of centralization in Bitcoin’s distributed network. In IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD’15). IEEE, 16.Google ScholarGoogle Scholar
  5. [5] Ben-Sasson Eli, Chiesa Alessandro, Tromer Eran, and Virza Madars. 2014. Succinct Non-interactive zero knowledge for a Von Neumann architecture. In 23rd USENIX Security Symposium (USENIX Security’14). 781796.Google ScholarGoogle Scholar
  6. [6] Benet Juan. 2014. IPFS - Content Addressed, Versioned, P2P File System. arxiv:1407.3561 [cs.NI].Google ScholarGoogle Scholar
  7. [7] Benet J. and Greco N.. 2017. Filecoin: A Decentralized Storage Network. Whitepaper. Protocol Labs. Retrieved from https://filecoin.io/filecoin.pdfGoogle ScholarGoogle Scholar
  8. [8] Benisi Nazanin Zahed, Aminian Mehdi, and Javadi Bahman. 2020. Blockchain-based decentralized storage networks: A survey. J. Netw. Comput. Applic. 162 (2020), 102656.Google ScholarGoogle ScholarCross RefCross Ref
  9. [9] Bez Mirko, Fornari Giacomo, and Vardanega Tullio. 2019. The scalability challenge of Ethereum: An initial quantitative analysis. In IEEE International Conference on Service-Oriented System Engineering (SOSE’19). IEEE, 167176.Google ScholarGoogle ScholarCross RefCross Ref
  10. [10] Blockchair. 2022. Blockchain explorer, analytics and web services. Retrieved from https://blockchair.com/bitcoinGoogle ScholarGoogle Scholar
  11. [11] Bonneau Joseph, Meckler Izaak, Rao Vanishree, and Shapiro Evan. 2020. Mina: Decentralized Cryptocurrency at Scale. Whitepaper New York University O (1) Labs, New York, NY, 147.Google ScholarGoogle Scholar
  12. [12] Camenisch Jan, Derler David, Krenn Stephan, Pöhls Henrich C., Samelin Kai, and Slamanig Daniel. 2017. Chameleon-hashes with ephemeral trapdoors. In IACR International Workshop on Public Key Cryptography. Springer, 152182.Google ScholarGoogle Scholar
  13. [13] Chakravarthy S. Kalyan, Sudhakar N., Reddy E. Srinivasa, Subramanian D. Venkata, and Shankar P.. 2019. Dimension reduction and storage optimization techniques for distributed and big data cluster environment. In Soft Computing and Medical Bioinformatics. Springer, 4754.Google ScholarGoogle ScholarCross RefCross Ref
  14. [14] Chen Huan and Wang Yijie. 2020. MiniChain: A lightweight protocol to combat the UTXO growth in public blockchain. J. Parallel Distrib. Comput. 143 (2020), 6776.Google ScholarGoogle ScholarCross RefCross Ref
  15. [15] Cheng Lichen, Liu Jiqiang, Su Chunhua, Liang Kaitai, Xu Guangquan, and Wang Wei. 2019. Polynomial-based modifiable blockchain structure for removing fraud transactions. Fut. Gen. Comput. Syst. 99 (2019), 154163.Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. [16] Corbet Shaen, Lucey Brian, and Yarovaya Larisa. 2018. Datestamping the Bitcoin and Ethereum bubbles. Finan. Res. Lett. 26 (2018), 8188.Google ScholarGoogle ScholarCross RefCross Ref
  17. [17] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer. 2016. On scaling decentralized blockchains: (A Position Paper). In International Conference on Financial Cryptography and Data Security, Springer, 106–125.Google ScholarGoogle Scholar
  18. [18] Dai Hong-Ning, Zheng Zibin, and Zhang Yan. 2019. Blockchain for internet of things: A survey. IEEE Internet Things J. 6, 5 (2019), 80768094.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Dai Xiaohai, Xiao Jiang, Yang Wenhui, Wang Chaofan, and Jin Hai. 2019. Jidar: A jigsaw-like data reduction approach without trust assumptions for Bitcoin system. In IEEE 39th International Conference on Distributed Computing Systems (ICDCS’19). IEEE, 13171326.Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Daniel Erik and Tschorsch Florian. 2022. IPFS and friends: A qualitative comparison of next generation peer-to-peer data networks. IEEE Commun. Surv. Tutor. 24, 1 (2022), 3152.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Delgado-Segura Sergi, Pérez-Sola Cristina, Navarro-Arribas Guillermo, and Herrera-Joancomartí Jordi. 2019. Analysis of the Bitcoin UTXO set. In International Workshops on Financial Cryptography and Data Security (FC’18). Springer, 7891.Google ScholarGoogle Scholar
  22. [22] Delgado-Segura Sergi, Pérez-Solà Cristina, Navarro-Arribas Guillermo, and Herrera-Joancomartí Jordi. 2020. A fair protocol for data trading based on Bitcoin transactions. Fut. Gen. Comput. Syst. 107 (2020), 832840.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Diène Bassirou, Diallo Ousmane, Rodrigues Joel J. P. C., Ndoye E. L. Hadji M., and Teodorov Ciprian. 2020. Data management mechanisms for IoT: Architecture, challenges and solutions. In 5th International Conference on Smart and Sustainable Technologies (SpliTech’20). IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  24. [24] Dorri Ali, Kanhere Salil S., and Jurdak Raja. 2017. Towards an optimized blockchain for IoT. In IEEE/ACM 2nd International Conference on Internet-of-Things Design and Implementation (IoTDI’17). IEEE, 173178.Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. [25] Dorri Ali, Kanhere Salil S., and Jurdak Raja. 2019. MOF-BC: A memory optimized and flexible blockchain for large scale networks. Fut. Gen. Comput. Syst. 92 (2019), 357373.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Dorri Ali, Kanhere Salil S., Jurdak Raja, and Gauravaram Praveen. 2017. Blockchain for IoT security and privacy: The case study of a smart home. In IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops’17). IEEE, 618623.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Florian Martin, Henningsen Sebastian, Beaucamp Sophie, and Scheuermann Björn. 2019. Erasing data from blockchain nodes. In IEEE European Symposium on Security and Privacy Workshops (EuroS&PW’19). IEEE, 367376.Google ScholarGoogle Scholar
  28. [28] Fullmer Daniel and Morse A. Stephen. 2018. Analysis of difficulty control in Bitcoin and proof-of-work blockchains. In IEEE Conference on Decision and Control (CDC’18). IEEE, 59885992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. [29] Gadekallu Thippa Reddy, Pham Quoc-Viet, Nguyen Dinh C., Maddikunta Praveen Kumar Reddy, Deepa Natarajan, Prabadevi B., Pathirana Pubudu N., Zhao Jun, and Hwang Won-Joo. 2021. Blockchain for edge of things: Applications, opportunities, and challenges. IEEE Internet Things J. 9, 2 (2021), 964988.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Karan Singh Garewal. 2020. Cryptocurrency Transaction Processing. Apress, Berkeley, CA, 113–136. Google ScholarGoogle ScholarCross RefCross Ref
  31. [31] Martinez Victor Gayoso, Hernández-Álvarez Luis, and Encinas Luis Hernandez. 2020. Analysis of the cryptographic tools for blockchain and Bitcoin. Mathematics 8, 1 (2020), 131.Google ScholarGoogle ScholarCross RefCross Ref
  32. [32] Ghimire Suman and Selvaraj Henry. 2018. A survey on Bitcoin cryptocurrency and its mining. In 26th International Conference on Systems Engineering (ICSEng’18). IEEE, 16.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Gibbs Toby and Yordchim Suwaree. 2014. Thai perception on Litecoin value. Int. J. Soc., Behav., Educ., Econ., Busin. Industr. Eng. 8, 8 (2014), 2613–5.Google ScholarGoogle Scholar
  34. [34] Grigoriev Dima and Shpilrain Vladimir. 2021. RSA and redactable blockchains. Int. J. Comput. Math.: Comput. Syst. Theor. 6, 1 (2021), 16.Google ScholarGoogle ScholarCross RefCross Ref
  35. [35] Haferkorn Martin and Diaz Josué Manuel Quintana. 2015. Seasonality and interconnectivity within cryptocurrencies—An analysis on the basis of Bitcoin, Litecoin and Namecoin. In 7th International Workshop on Enterprise Applications and Services in the Finance Industry (FinanceCom’14). Springer, 106120.Google ScholarGoogle Scholar
  36. [36] Hafid Abdelatif, Hafid Abdelhakim Senhaji, and Samih Mustapha. 2020. Scaling blockchains: A comprehensive survey. IEEE Access 8 (2020), 125244125262.Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Haque A. K. M. Bahalul, Islam A. K. M. Najmul, Hyrynsalmi Sami, Naqvi Bilal, and Smolander Kari. 2021. GDPR compliant blockchains—A systematic literature review. IEEE Access 9 (2021), 5059350606.Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] He Qinlu, Li Zhanhuai, and Zhang Xiao. 2010. Data deduplication techniques. In International Conference on Future Information Technology and Management Engineering, Vol. 1. IEEE, 430433.Google ScholarGoogle Scholar
  39. [39] Heo Jun Wook, Dorri Ali, and Jurdak Raja. 2022. Multi-level distributed caching on the blockchain for storage optimisation. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC’22). Institute of Electrical and Electronics Engineers Inc.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Heo Jun Wook, Ramachandran Gowri Sankar, Dorri Ali, and Jurdak Raja. 2022. Blockchain storage optimisation with multi-level distributed caching. IEEE Trans. Netw. Serv. Manag. 19, 4 (2022), 37243736.Google ScholarGoogle ScholarCross RefCross Ref
  41. [41] Huang Huawei, Kong Wei, Zhou Sicong, Zheng Zibin, and Guo Song. 2021. A survey of state-of-the-art on blockchains: Theories, modelings, and tools. ACM Comput. Surv. 54, 2 (2021), 142.Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. [42] Huang Ke, Zhang Xiaosong, Mu Yi, Rezaeibagha Fatemeh, and Du Xiaojiang. 2021. Scalable and redactable blockchain with update and anonymity. Inf. Sci. 546 (2021), 2541.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Kaushal Puneet Kumar, Bagga Amandeep, and Sobti Rajeev. 2017. Evolution of Bitcoin and security risk in Bitcoin wallets. In International Conference on Computer, Communications and Electronics (Comptelix’17). IEEE, 172177.Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Kumar Randhir and Tripathi Rakesh. 2019. Implementation of distributed file storage and access framework using IPFS and blockchain. In 5th International Conference on Image Information Processing (ICIIP’19). IEEE, 246251.Google ScholarGoogle ScholarCross RefCross Ref
  45. [45] Li Kejiao, Li Hui, Hou Hanxu, Li Kedan, and Chen Yongle. 2017. Proof of vote: A high-performance consensus protocol based on vote mechanism & consortium blockchain. In IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS’17). IEEE, 466473.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Liu Haojun, Luo Xinbo, Liu Hongrui, and Xia Xubo. 2021. Merkle tree: A fundamental component of blockchains. In International Conference on Electronic Information Engineering and Computer Science (EIECS’21). IEEE, 556561.Google ScholarGoogle ScholarCross RefCross Ref
  47. [47] Liu Yulin, Zhang Luyao, and Zhao Yinhong. 2022. Deciphering Bitcoin blockchain data by cohort analysis. Scient. Data 9, 1 (2022), 136.Google ScholarGoogle ScholarCross RefCross Ref
  48. [48] Lu Shaofei, Xia Qinhua, Tang Xiaolin, Zhang Xuyang, Lu Yingping, and She Jingke. 2021. A reliable data compression scheme in sensor-cloud systems based on edge computing. IEEE Access 9 (2021), 4900749015.Google ScholarGoogle ScholarCross RefCross Ref
  49. [49] Ma Meng, Wang Ping, and Chu Chao-Hsien. 2013. Data management for internet of things: Challenges, approaches and opportunities. In IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. IEEE, 11441151.Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. [50] Malik Sidra, Kanhere Salil S., and Jurdak Raja. 2018. ProductChain: Scalable blockchain framework to support provenance in supply chains. In IEEE 17th International Symposium on Network Computing and Applications (NCA’18). IEEE, 110.Google ScholarGoogle Scholar
  51. [51] Manogar E. and Abirami S.. 2014. A study on data deduplication techniques for optimized storage. In 6th International Conference on Advanced Computing (ICoAC’14). IEEE, 161166.Google ScholarGoogle ScholarCross RefCross Ref
  52. [52] Matzutt Roman, Henze Martin, Ziegeldorf Jan Henrik, Hiller Jens, and Wehrle Klaus. 2018. Thwarting unwanted blockchain content insertion. In IEEE International Conference on Cloud Engineering (IC2E’18). IEEE, 364370.Google ScholarGoogle ScholarCross RefCross Ref
  53. [53] Matzutt Roman, Hiller Jens, Henze Martin, Ziegeldorf Jan Henrik, Müllmann Dirk, Hohlfeld Oliver, and Wehrle Klaus. 2018. A quantitative analysis of the impact of arbitrary blockchain content on Bitcoin. In International Conference on Financial Cryptography and Data Security. Springer, 420438.Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. [54] Matzutt Roman, Kalde Benedikt, Pennekamp Jan, Drichel Arthur, Henze Martin, and Wehrle Klaus. 2020. How to securely prune Bitcoin’s blockchain. In IFIP Networking Conference (Networking’20). IEEE, 298306.Google ScholarGoogle Scholar
  55. [55] Mingxiao Du, Xiaofeng Ma, Zhe Zhang, Xiangwei Wang, and Qijun Chen. 2017. A review on consensus algorithm of blockchain. In IEEE International Conference on Systems, Man, and Cybernetics (SMC’17). IEEE, 25672572.Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. [56] Nakamoto Satoshi. 2009. Bitcoin: A peer-to-peer electronic cash system. Retrieved from https://bitcoin.org/en/bitcoin-paperGoogle ScholarGoogle Scholar
  57. [57] Nasir Muhammad Hassan, Arshad Junaid, Khan Muhammad Mubashir, Fatima Mahawish, Salah Khaled, and Jayaraman Raja. 2022. Scalable blockchains—A systematic review. Fut. Gen. Comput. Syst. 126 (2022), 136162.Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. [58] Nath Suman. 2009. Energy efficient sensor data logging with amnesic flash storage. In International Conference on Information Processing in Sensor Networks. IEEE, 157168.Google ScholarGoogle Scholar
  59. [59] Nerurkar Pranav, Patel Dhiren, Busnel Yann, Ludinard Romaric, Kumari Saru, and Khan Muhammad Khurram. 2021. Dissecting Bitcoin blockchain: Empirical analysis of Bitcoin network (2009–2020). J. Netw. Comput. Applic. 177 (2021), 102940.Google ScholarGoogle ScholarCross RefCross Ref
  60. [60] Niya Sina Rafati, Willems Julius, and Stiller Burkhard. 2021. On-chain IoT data modification in blockchains. arXiv preprint arXiv:2103.10756 (2021).Google ScholarGoogle Scholar
  61. [61] Özyılmaz Kazım Rıfat, Patel Harsh, and Malik Ankit. 2018. Split-scale: Scaling Bitcoin by partitioning the UTXO space. In IEEE 9th International Conference on Software Engineering and Service Science (ICSESS’18). IEEE, 4145.Google ScholarGoogle ScholarCross RefCross Ref
  62. [62] O’Connor Russell and Piekarska Marta. 2017. Enhancing Bitcoin transactions with covenants. In International Workshops on Financial Cryptography and Data Security (FC’17). Springer, 191198.Google ScholarGoogle Scholar
  63. [63] Padmavathi M. and Suresh R. M.. 2019. Secure P2P intelligent network transaction using Litecoin. Mob. Netw. Applic. 24 (2019), 318326.Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. [64] Pervez Huma, Muneeb Muhammad, Irfan Muhammad Usama, and Haq Irfan Ul. 2018. A comparative analysis of DAG-based blockchain architectures. In 12th International Conference on Open Source Systems and Technologies (ICOSST’18). IEEE, 2734.Google ScholarGoogle ScholarCross RefCross Ref
  65. [65] Andrew Poelstra. 2016. Mimblewimble. White paper (2016). https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdfGoogle ScholarGoogle Scholar
  66. [66] Politou Eugenia, Casino Fran, Alepis Efthymios, and Patsakis Constantinos. 2019. Blockchain mutability: Challenges and proposed solutions. IEEE Trans. Emerg. Topics Comput. 9, 4 (2019), 1972–1986.Google ScholarGoogle Scholar
  67. [67] Puddu Ivan, Dmitrienko Alexandra, and Capkun Srdjan. 2017. \(\mu\)chain: How to forget without hard forks. IACR Cryptology ePrint Archive 2017/106 (2017).Google ScholarGoogle Scholar
  68. [68] Pyoung Chan Kyu and Baek Seung Jun. 2019. Blockchain of finite-lifetime blocks with applications to edge-based IoT. IEEE Internet Things J. 7, 3 (2019), 21022116.Google ScholarGoogle ScholarCross RefCross Ref
  69. [69] Radhakrishnan Rahul, Ramachandran Gowri Sankar, and Krishnamachari Bhaskar. 2019. SDPP: Streaming data payment protocol for data economy. In IEEE International Conference on Blockchain and Cryptocurrency (ICBC’19). IEEE, 1718.Google ScholarGoogle ScholarCross RefCross Ref
  70. [70] Ramachandran Gowri Sankar and Krishnamachari Bhaskar. 2018. Blockchain for the IoT: Opportunities and challenges. arXiv preprint arXiv:1805.02818 (2018).Google ScholarGoogle Scholar
  71. [71] Ramachandran Gowri Sankar, Malik Sidra, Pal Shantanu, Dorri Ali, Dedeoglu Volkan, Kanhere Salil, and Jurdak Raja. 2021. Blockchain in supply chain: Opportunities and design considerations. arXiv preprint arXiv:2108.12032 (2021).Google ScholarGoogle Scholar
  72. [72] Ramachandran Gowri Sankar, Radhakrishnan Rahul, and Krishnamachari Bhaskar. 2018. Towards a decentralized data marketplace for smart cities. In IEEE International Smart Cities Conference (ISC2’18). 18. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  73. [73] Rani Ridhima, Khurana Meenu, Sharma Deepika, and Moudgil Aditi. 2021. Comparative study on various storage optimization techniques in IoT-cloud ecosystem. In International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE’21). IEEE, 659663.Google ScholarGoogle ScholarCross RefCross Ref
  74. [74] Samonas Spyridon and Coss David. 2014. The CIA strikes back: Redefining confidentiality, integrity and availability in security. J. Inf. Syst. Secur. 10, 3 (2014).Google ScholarGoogle Scholar
  75. [75] Schellekens Maurice. 2019. Does regulation of illegal content need reconsideration in light of blockchains? Int. J. Law Inf. Technol. 27, 3 (2019), 292305.Google ScholarGoogle ScholarCross RefCross Ref
  76. [76] Schwerin Simon. 2018. Blockchain and privacy protection in the case of the European general data protection regulation (GDPR): A delphi study. J. Brit. Blockchain Assoc. 1, 1 (2018).Google ScholarGoogle Scholar
  77. [77] Sharma Pratima, Jindal Rajni, and Borah Malaya Dutta. 2020. Blockchain technology for cloud storage: A systematic literature review. ACM Comput. Surv. 53, 4 (2020), 132.Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. [78] Silvano Wellington Fernandes and Marcelino Roderval. 2020. IOTA tangle: A cryptocurrency to communicate internet-of-things data. Fut. Gen. Comput. Syst. 112 (2020), 307319.Google ScholarGoogle ScholarCross RefCross Ref
  79. [79] Srivastava Pallavi and Garg Navish. 2015. Secure and optimized data storage for IoT through cloud framework. In International Conference on Computing, Communication & Automation. IEEE, 720723.Google ScholarGoogle ScholarCross RefCross Ref
  80. [80] Tatar Unal, Gokce Yasir, and Nussbaum Brian. 2020. Law versus technology: Blockchain, GDPR, and tough tradeoffs. Comput. Law Secur. Rev. 38 (2020), 105454.Google ScholarGoogle ScholarCross RefCross Ref
  81. [81] Tikhomirov Sergei. 2018. Ethereum: State of knowledge and research perspectives. In 10th International Symposium on Foundations and Practice of Security (FPS’17). Springer, 206221.Google ScholarGoogle Scholar
  82. [82] Trón Viktor, Fischer Aron, Nagy Dániel A., Felföldi Zsolt, and Johnson Nick. 2016. Swap, Swear, and Swindle: Incentive System for Swarm. Technical Report, Ethersphere Orange Papers 1 (2016).Google ScholarGoogle Scholar
  83. [83] Tschorsch Florian and Scheuermann Björn. 2016. Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 18, 3 (2016), 20842123.Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. [84] Vijayalakshmi J. and Murugan A.. 2019. Revamp perception of Bitcoin using cognizant merkle. In Emerging Research in Computing, Information, Communication and Applications Conference (ERCICA’18). Springer, 141150.Google ScholarGoogle ScholarCross RefCross Ref
  85. [85] David Vorick and Luke Champine. 2014. Sia: Simple Decentralized Storage. Retrieved May 8, 2014. https://sia.tech/sia.pdfGoogle ScholarGoogle Scholar
  86. [86] Vukolić Marko. 2016. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In International Workshop on Open Problems in Network Security (iNetSec’15). Springer, 112125.Google ScholarGoogle Scholar
  87. [87] Wang Xiaoqing, Wang Chunping, Zhou Kun, and Cheng Hongbing. 2021. ESS: An efficient storage scheme for improving the scalability of Bitcoin network. IEEE Trans. Netw. Serv. Manag. 19, 2 (2021), 11911202.Google ScholarGoogle ScholarDigital LibraryDigital Library
  88. [88] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin. 2014. Storj a peer-to-peer cloud storage network. White Paper. https://www.storj.io/storj2014.pdfGoogle ScholarGoogle Scholar
  89. [89] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper 151, 2014 (2014), 1–32.Google ScholarGoogle Scholar
  90. [90] Xie Junfeng, Yu F. Richard, Huang Tao, Xie Renchao, Liu Jiang, and Liu Yunjie. 2019. A survey on the scalability of blockchain systems. IEEE Netw. 33, 5 (2019), 166173.Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. [91] Xu Ronghua, Ramachandran Gowri Sankar, Chen Yu, and Krishnamachari Bhaskar. 2019. BlendSM-DDM: Blockchain-enabled secure microservices for decentralized data marketplaces. In IEEE International Smart Cities Conference (ISC2’19). IEEE, 1417.Google ScholarGoogle ScholarCross RefCross Ref
  92. [92] Xu Zihuan, Han Siyuan, and Chen Lei. 2018. CUB, a consensus unit-based storage scheme for blockchain system. In IEEE 34th International Conference on Data Engineering (ICDE’18). IEEE, 173184.Google ScholarGoogle ScholarCross RefCross Ref
  93. [93] Xue He, Chen Dajiang, Zhang Ning, Dai Hong-Ning, and Yu Keping. 2023. Integration of blockchain and edge computing in internet of things: A survey. Fut. Gen. Comput. Syst. 144 (2023), 307326.Google ScholarGoogle ScholarDigital LibraryDigital Library
  94. [94] Yang Ruizhe, Yu F. Richard, Si Pengbo, Yang Zhaoxin, and Zhang Yanhua. 2019. Integrated blockchain and edge computing systems: A survey, some research issues and challenges. IEEE Commun. Surv. Tutor. 21, 2 (2019), 15081532.Google ScholarGoogle ScholarCross RefCross Ref
  95. [95] Ye Tao, Luo Min, Yang Yi, Choo Kim-Kwang Raymond, and He Debiao. 2023. A survey on redactable blockchain: Challenges and opportunities. IEEE Trans. Netw. Sci. Eng. 10, 3 (2023), 1669–1683. Google ScholarGoogle ScholarCross RefCross Ref
  96. [96] Yu Fei Richard and He Ying. 2019. A service-oriented blockchain system with virtualization. Trans. Blockch. Technol. Applic. 1, 1 (2019), 110.Google ScholarGoogle Scholar
  97. [97] Yu Fei Richard, Liu Jianmin, He Ying, Si Pengbo, and Zhang Yanhua. 2018. Virtualization for distributed ledger technology (vDLT). IEEE Access 6 (2018), 2501925028.Google ScholarGoogle ScholarCross RefCross Ref
  98. [98] Zhang Changqiang, Wu Cangshuai, and Wang Xinyi. 2020. Overview of blockchain consensus mechanism. In 2nd International Conference on Big Data Engineering. 712.Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. [99] Zhang Di, Le Junqing, Lei Xinyu, Xiang Tao, and Liao Xiaofeng. 2021. Exploring the redaction mechanisms of mutable blockchains: A comprehensive survey. Int. J. Intell. Syst. 36, 9 (2021), 50515084.Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. [100] Zhang Xiaojing, Qin Rui, Yuan Yong, and Wang Fei-Yue. 2018. An analysis of blockchain-based Bitcoin mining difficulty: Techniques and principles. In Chinese Automation Congress (CAC’18). IEEE, 11841189.Google ScholarGoogle Scholar
  101. [101] Zheng Qiuhong, Li Yi, Chen Ping, and Dong Xinghua. 2018. An innovative IPFS-based storage model for blockchain. In IEEE/WIC/ACM International Conference on Web Intelligence (WI’18). 704708. DOI:Google ScholarGoogle ScholarCross RefCross Ref
  102. [102] Zhou Qiheng, Huang Huawei, Zheng Zibin, and Bian Jing. 2020. Solutions to scalability of blockchain: A survey. IEEE Access 8 (2020), 1644016455.Google ScholarGoogle ScholarCross RefCross Ref
  103. [103] Zhu Yan, Guo Ruiqi, Gan Guohua, and Tsai Wei-Tek. 2016. Interactive incontestable signature for transactions confirmation in Bitcoin blockchain. In IEEE 40th Annual Computer Software and Applications Conference (COMPSAC’16), Vol. 1. IEEE, 443448.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Blockchain Data Storage Optimisations: A Comprehensive Survey

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Computing Surveys
          ACM Computing Surveys  Volume 56, Issue 7
          July 2024
          1006 pages
          ISSN:0360-0300
          EISSN:1557-7341
          DOI:10.1145/3613612
          • Editors:
          • David Atienza,
          • Michela Milano
          Issue’s Table of Contents

          Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 9 April 2024
          • Online AM: 8 February 2024
          • Accepted: 31 January 2024
          • Revised: 17 December 2023
          • Received: 7 September 2022
          Published in csur Volume 56, Issue 7

          Check for updates

          Qualifiers

          • survey
        • Article Metrics

          • Downloads (Last 12 months)388
          • Downloads (Last 6 weeks)186

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Full Text

        View this article in Full Text.

        View Full Text