Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantified retrospective biomonitoring of fetal and infant elemental exposure using LA-ICP-MS analysis of deciduous dentin in three contrasting human cohorts

Abstract

Background

Spatial elemental analysis of deciduous tooth dentin combined with odontochronological estimates can provide an early life (in utero to ~2 years of age) history of inorganic element exposure and status.

Objective

To demonstrate the importance of data normalization to a certified reference material to enable between-study comparisons, using populations with assumed contrasting elemental exposures.

Methods

We used laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) of dentin to derive a history of elemental composition from three distinct cohort studies: a present day rural cohort, (the New Hampshire Birth Cohort Study (NHBCS; N = 154)), an historical cohort from an urban area (1958-1970), (the St. Louis Baby Tooth Study (SLBT; N = 78)), and a present-day Nigerian cohort established to study maternal HIV transmission (Dental caries and its association with Oral Microbiomes and HIV in young children-Nigeria (DOMHaIN; N = 31)).

Results

We report Li, Al, Mn, Cu, Zn, Sr, Ba and Pb concentrations (µg/g) and qualitatively examine As, Cd and Hg across all three cohorts. Rates of detection were highest, both overall and for each cohort individually, for Zn, Sr, Ba and Li. Zinc was detected in 100% of samples and was stably present in teeth at a concentration range of 64 – 86 µg/g. Mercury, As and Cd detection rates were the lowest, and had high variability within individual ablated spots. We found the highest concentrations of Pb in the pre- and postnatal dentin of the SLBT cohort, consistent with the prevalent use of Pb as an additive to gasoline prior to 1975. The characteristic decline in Mn after the second trimester was observed in all cohorts.

Impact

  • Spatially resolved elemental analysis of deciduous teeth combined with methods for estimating crown formation times can be used to reconstruct an early-life history of elemental exposure inaccessible via other biomarkers. Quantification of data into absolute values using an external standard reference material has not been conducted since 2012, preventing comparison between studies, a common and highly informative component of epidemiology. We demonstrate, with three contrasting populations, that absolute quantification produces data with the lowest variability, compares well with available data and recommends that future tooth biomarker studies report data in this way.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ablation patterns of well-detected (calcium, black and manganese, blue) and poorly detected (arsenic, green) elements obtained from primary teeth using LA-ICP-MS.
Fig. 2: Elemental concentrations in deciduous dentin.
Fig. 3: Distribution of log transformed elemental concentrations in prenatal and postnatal dentin.

Similar content being viewed by others

Data availability

Use of the data may be possible under certain conditions by contacting the New Hampshire Birth Cohort Study Principal Investigator: Margaret R. Karagas. (Margaret.r.karagas@dartmouth.edu), the Saint Louis Baby Teeth Study Principal Investigator, Marc G. Weisskopf (mweissko@hsph.harvard.edu) and the Dental Caries and its association with Oral Microbiomes and HIV in young children-Nigeria Principal Investigator, Modupe O. Coker (mc2190@sdm.rutgers.edu).

References

  1. Birch W, Dean MC. A method of calculating human deciduous crown formation times and of estimating the chronological ages of stressful events occurring during deciduous enamel formation. J Forensic Leg Med. 2014;22:127–44.

    Article  CAS  PubMed  Google Scholar 

  2. Arora M, Kennedy BJ, Elhlou S, Pearson NJ, Walker DM, Bayl P, et al. Spatial distribution of lead in human primary teeth as a biomarker of pre- and neonatal lead exposure. Sci Total Environ. 2006;371:55–62.

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Arora M, Hare D, Austin C, Smith DR, Doble P. Spatial distribution of manganese in enamel and coronal dentine of human primary teeth. Sci Total Environ. 2011;409:1315–9.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Hare D, Austin C, Doble P, Arora M. Elemental bioimaging of trace elements in teeth using laser ablation-inductively coupled plasma-mass spectrometry. J Dent. 2011;39:397–403.

    Article  CAS  PubMed  Google Scholar 

  5. Arora M, Bradman A, Austin C, Vedar M, Holland N, Eskenazi B, et al. Determining fetal manganese exposure from mantle dentine of deciduous teeth. Environ Sci Technol. 2012;46:5118–25.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Arora M, Austin C. Teeth as a biomarker of past chemical exposure. Curr Opin Pediatr. 2013;25:261–7.

    Article  CAS  PubMed  Google Scholar 

  7. Sabel N, Johansson C, Kühnisch J, Robertson A, Steiniger F, Norén JG, et al. Neonatal lines in the enamel of primary teeth—A morphological and scanning electron microscopic investigation. Arch Oral Biol. 2008;53:954–63.

    Article  PubMed  Google Scholar 

  8. Haavikko K, Anttila A, Helle A, Pesonen E. Atherosclerosis precursors in Finnish children and adolescents. XIV. Zinc and copper concentrations in deciduous teeth. Acta Paediatr Scand Suppl. 1985;318:213–9.

    Article  CAS  PubMed  Google Scholar 

  9. Anjos MJ, Barroso RC, Perez CA, Braz D, Moreira S, Dias KRHC, et al. Elemental mapping of teeth using µSRXRF. Nucl Instrum Meth B. 2004;213:569–73.

    Article  CAS  ADS  Google Scholar 

  10. Altshuller LF, Halak DB, Landing BH, Kehoe RA. Deciduous teeth as an index of the body burden of lead. J Pediatr. 1962;60:224–9.

    Article  CAS  PubMed  Google Scholar 

  11. Needleman HL, Tuncay OC, Shapiro IM. Lead levels in deciduous teeth of urban and suburban American children. Nature. 1972;235:111–2.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Arora M, Chan SW, Kennedy BJ, Sharma A, Crisante D, Walker DM. Spatial distribution of lead in the roots of human primary teeth. J Trace Elem Med Biol. 2004;18:135–9.

    Article  CAS  PubMed  Google Scholar 

  13. Youravong N, Chongsuvivatwong V, Teanpaisan R, Geater AF, Dietz W, Dahlen G, et al. Morphology of enamel in primary teeth from children in Thailand exposed to environmental lead. Sci Total Environ. 2005;348:73–81.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Youravong N, Teanpaisan R, Noren JG, Robertson A, Dietz W, Odelius H, et al. Chemical composition of enamel and dentine in primary teeth in children from Thailand exposed to lead. Sci Total Environ. 2008;389:253–8.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. de Souza Guerra C, Fernanda Gerlach R, Graciele Villela Pinto N, Coutinho Cardoso S, Moreira S, Pereira de Almeida A, et al. X-ray fluorescence with synchrotron radiation to elemental analysis of lead and calcium content of primary teeth. Appl Radiat isotopes 2010;68:71–5.

    Article  Google Scholar 

  16. Barton HJ. Advantages of the use of deciduous teeth, hair, and blood analysis for lead and cadmium bio-monitoring in children. A study of 6-year-old children from Krakow (Poland). Biol Trace Elem Res. 2011;143:637–58.

    Article  CAS  PubMed  Google Scholar 

  17. Orzechowska-Wylegala B, Obuchowicz A, Malara P, Fischer A, Kalita B. Cadmium and lead accumulate in the deciduous teeth of children with celiac disease or food allergies. Int J Stomatol occlusion Med. 2011;4:28–31.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johnston JE, Franklin M, Roh H, Austin C, Arora M. Lead and arsenic in shed deciduous teeth of children living near a lead-acid battery smelter. Environ Sci Technol. 2019;53:6000–6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Gunier RB, Arora M, Jerrett M, Bradman A, Harley KG, Mora AM, et al. Manganese in teeth and neurodevelopment in young Mexican-American children. Environ Res. 2015;142:688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Friedman A, Bauer JA, Austin C, Downs TJ, Tripodis Y, Heiger-Bernays W, et al. Multiple metals in children’s deciduous teeth: results from a community-initiated pilot study. J Expos Sci Environ Epidemiol. 2021;32:408–17.

  21. Horton MK, Hsu L, Claus Henn B, Margolis A, Austin C, Svensson K, et al. Dentine biomarkers of prenatal and early childhood exposure to manganese, zinc and lead and childhood behavior. Environ Int. 2018;121:148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mora AM, Arora M, Harley KG, Kogut K, Parra K, Hernandez-Bonilla D, et al. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5 years in the CHAMACOS cohort. Environ Int. 2015;84:39–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bauer JA, Claus Henn B, Austin C, Zoni S, Fedrighi C, Cagna G, et al. Manganese in teeth and neurobehavior: Sex-specific windows of susceptibility. Environ Int. 2017;108:299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sanders AP, Claus Henn B, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Health Rep. 2015;2:284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Claus Henn B, Austin C, Coull BA, Schnaas L, Gennings C, Horton MK, et al. Uncovering neurodevelopmental windows of susceptibility to manganese exposure using dentine microspatial analyses. Environ Res. 2018;161:588–98.

    Article  CAS  PubMed  Google Scholar 

  26. Austin C, Smith TM, Bradman A, Hinde K, Joannes-Boyau R, Bishop D, et al. Barium distributions in teeth reveal early-life dietary transitions in primates. Nature. 2013;498:216–9.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Gunier RB, Bradman A, Jerrett M, Smith DR, Harley KG, Austin C, et al. Determinants of manganese in prenatal dentin of shed teeth from CHAMACOS children living in an agricultural community. Environ Sci Technol. 2013;47:11249–57.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Reiss LZ. Strontium-90 absorption by deciduous teeth. Science. 1961;134:1669–73.

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Humphrey LT, Dean MC, Jeffries TE. An evaluation of changes in strontium/calcium ratios across the neonatal line in human deciduous teeth. In: Bailey SE, Hublin JJ, editors. Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology. Dordrecht: Springer; 2007. p. 303–19.

  30. Coker MO, Akhigbe P, Osagie E, Idemudia NL, Igedegbe O, Chukwumah N, et al. Dental caries and its association with the oral microbiomes and HIV in young children-Nigeria (DOMHaIN): a cohort study. BMC Oral Health. 2021;21:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blaisdell CJ, Park C, Hanspal M, Roary M, Arteaga SS, Laessig S, et al. The NIH ECHO Program: investigating how early environmental influences affect child health. Pediatr Res. 2022;92:1215–6.

    Article  PubMed  Google Scholar 

  32. Coker MO, Akhigbe P, Osagie E, Idemudia NL, Igedegbe O, Chukwumah N, et al. Dental caries and its association with the oral microbiomes and HIV in young children—Nigeria (DOMHaIN): a cohort study. BMC Oral Health. 2021;21:620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akhigbe P, Chukwumah NM, Folayan MO, Divaris K, Obuekwe O, Omoigberale A, et al. Age-specific associations with dental caries in HIV-infected, exposed but uninfected and HIV-unexposed uninfected children in Nigeria. BMC Oral Health. 2022;22:429.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Onyia NE, Akhigbe P, Osagie E, Obuekwe O, Omoigberale A, Richards VP, et al. Prevalence and associated factors of enamel developmental defects among Nigerian children with perinatal HIV exposure. J Clin Pediatr Dent. 2023;47:1–9.

    PubMed  PubMed Central  Google Scholar 

  35. Jochum KP, Nohl L, Herwig K, Lammel E, Stoll B, Hofmann AW. GeoReM: A new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res. 2005;29:333–8.

    Article  CAS  Google Scholar 

  36. Hetter KM, Bellis DJ, Geraghty C, Todd AC, Parsons PJ. Development of candidate reference materials for the measurement of lead in bone. Anal Bioanal Chem. 2008;391:2011–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J Anal At Spectrom. 2011;26:2508–18.

    Article  CAS  Google Scholar 

  38. Ohmori I. Biochemical studies on deciduous tooth substances. Part I. Application of silver nitrate. Bull Tokyo Med Dent Univ. 1961;8:83–95.

    Google Scholar 

  39. Howell D, Griffin WL, Pearson NJ, Powell W, Wieland P, O’Reilly SY. Trace element partitioning in mixed-habit diamonds. Chem Geol. 2013;355:134–43.

    Article  CAS  ADS  Google Scholar 

  40. Birch W, Dean C. Rates of enamel formation in human deciduous teeth. Front Oral Biol. 2009;13:116–20.

    Article  PubMed  Google Scholar 

  41. Schour I. The neonatal line in enamel and dentine of the human deciduous teeth and first permanent molar. J Am Dent Assoc. 1936;26:1946–55.

    Google Scholar 

  42. Austin C, Smith TM, Farahani RM, Hinde K, Carter EA, Lee J, et al. Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci Rep. 2016;6:18802.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Zota AR, Riederer AM, Ettinger AS, Schaider LA, Shine JP, Amarasiriwardena CJ, et al. Associations between metals in residential environmental media and exposure biomarkers over time in infants living near a mining-impacted site. J exposure Sci Environ Epidemiol. 2016;26:510–9.

    Article  CAS  Google Scholar 

  44. Schell LM, Denham M, Stark AD, Ravenscroft J, Parsons P, Schulte E. Relationship between blood lead concentration and dietary intakes of infants from 3 to 12 months of age. Environ Res. 2004;96:264–73.

    Article  CAS  PubMed  Google Scholar 

  45. Shepherd TJ, Dirks W, Manmee C, Hodgson S, Banks DA, Averley P, et al. Reconstructing the life-time lead exposure in children using dentine in deciduous teeth. Sci Total Environ. 2012;425:214–22.

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Szostek K, Głab H, Pudło A. The use of strontium and barium analyses for the reconstruction of the diet of the early medieval coastal population of Gdańsk (Poland): A preliminary study. Homo. 2009;60:359–72.

    Article  PubMed  Google Scholar 

  47. Dean C, Le Cabec A, Spiers K, Zhang Y, Garrevoet J. Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. J R Soc Interface. 2018;15:20170626.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rossipal E, Krachler M, Li F, Micetic-Turk D. Investigation of the transport of trace elements across barriers in humans: Studies of placental and mammary transfer. Acta Paediatr 2000;89:1190–5.

    Article  CAS  PubMed  Google Scholar 

  49. Zaichick V, Ovchjarenko N, Zaichick S. In vivo energy dispersive X-ray fluorescence for measuring the content of essential and toxic trace elements in teeth. Appl Radiat Isotopes 1999;50:283–93.

    Article  CAS  Google Scholar 

  50. Pinheiro T, Carvalho ML, Casaca C, Barreiros MA, Cunha AS, Chevallier P. Microprobe analysis of teeth by synchrotron radiation: environmental contamination. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms. 1999;158:393–8.

    Article  CAS  ADS  Google Scholar 

  51. Wolf JH. Low breastfeeding rates and public health in the United States. Am J Public Health. 2003;93:2000–10.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Upadhyay K, Viramgami A, Bagepally BS, Balachandar R. Association between blood lead levels and markers of calcium homeostasis: a systematic review and meta-analysis. Sci Rep. 2022;12:1850.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Prevention CfDCa. Lead in Paint [Web Page]. https://www.cdc.gov/nceh/lead/prevention/sources/paint.htm#:~:text=Lead%2Dbased%20paints%20were%20banned,lead%20paint%20chips%20and%20dust: CDC; 2022 [updated 12/16/22. Sources of Lead Exposure]. Available from.

  54. Tsuji LJ, Karagatzides JD, Katapatuk B, Young J, Kozlovic DR, Hannin RM, et al. Elevated dentine-lead levels in deciduous teeth collected from remote first nation communities located in the western James Bay region of northern Ontario, Canada. J Environ Monit: Jem 2001;3:702–5.

    Article  CAS  PubMed  Google Scholar 

  55. Oulhote Y, Mergler D, Bouchard MF. Sex- and age-differences in blood manganese levels in the U.S. general population: national health and nutrition examination survey 2011–2012. Environ Health. 2014;13:87.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev. 2011;2011:841749.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Henn BC, Bellinger DC, Hopkins MR, Coull BA, Ettinger AS, Jim R, et al. Maternal and cord blood manganese concentrations and early childhood neurodevelopment among residents near a mining-impacted superfund site. Environ Health Perspect. 2017;125:067020.

    Article  Google Scholar 

  58. Lindsey BD, Belitz K, Cravotta CA, Toccalino PL, Dubrovsky NM. Lithium in groundwater used for drinking-water supply in the United States. Sci Total Environ. 2021;767:144691.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Schou M. Lithium in psychiatric therapy and prophylaxis. J Psychiatr Res. 1968;6:67–95.

    Article  CAS  PubMed  Google Scholar 

  60. Aral H, Vecchio-Sadus A. Toxicity of lithium to humans and the environment—A literature review. Ecotoxicol Environ Saf. 2008;70:349–56.

    Article  CAS  PubMed  Google Scholar 

  61. Streets DG, Lu Z, Levin L, ter Schure AFH, Sunderland EM. Historical releases of mercury to air, land, and water from coal combustion. Sci Total Environ. 2018;615:131–40.

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Pacyna JM, Travnikov O, De Simone F, Hedgecock IM, Sundseth K, Pacyna EG, et al. Current and future levels of mercury atmospheric pollution on a global scale. Atmos Chem Phys. 2016;16:12495–511.

    Article  CAS  ADS  Google Scholar 

  63. Rahman Z, Singh VP. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ Monit Assess. 2019;191:419.

    Article  PubMed  Google Scholar 

  64. EPA. Mercury and Air Toxics Standards [Rule]. https://www.epa.gov/stationary-sources-air-pollution/mercury-and-air-toxics-standards: Environmental Protection Agency; 2023 [updated 04/03/23. Stationary Sources of Air Pollution: Mercury and Air Toxics Standards].

  65. Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL. Arsenic, organic foods and brown rice syrup. Environ Health Perpects. 2012;120:623–6.

    Article  CAS  Google Scholar 

  66. Karagas MR, Tosteson TD, Blum J, Klaue B, Weiss JE, Stannard V, et al. Measurement of low levels of arsenic exposure: A comparison of water and toenail concentrations. Am J Epidemiol. 2000;152:84–90.

    Article  CAS  PubMed  Google Scholar 

  67. Carignan CC, Cottingham KL, Jackson BP, Farzan SF, Gandolfi AJ, Punshon T, et al. Estimated exposure to arsenic in breastfed and formula-fed infants in a United States Cohort. Environ Health Perspect. 2015;123:500–6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Punshon T, Davis MA, Marsit CJ, Theiler SK, Baker ER, Jackson BP, et al. Placental arsenic concentrations in relation to both maternal and infant biomarkers of exposure in a US cohort. J Expo Sci Environ Epidemiol. 2015;25:599–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baris D, Waddell R, Beane Freeman LE, Schwenn M, Colt JS, Ayotte JD, et al. Elevated bladder cancer in Northern New England: The role of drinking water and arsenic. J Natl Cancer Inst. 2016;108:djw099.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Carignan CC, Punshon T, Karagas MR, Cottingham KL. Potential exposure to arsenic from infant rice cereal. Ann Glob Health. 2016;82:221–4.

    Article  PubMed  Google Scholar 

  71. Karagas MR, Punshon T, Sayarath V, Jackson BP, Folt CL, Cottingham KL. Association of rice and rice-product consumption with arsenic exposure early in life. JAMA Pediatr. 2016;170:609–16.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Davis MA, Signes-Pastor AJ, Argos M, Slaughter F, Pendergrast C, Punshon T, et al. Assessment of human dietary exposure to arsenic through rice. Sci Total Environ. 2017;586:1237–44.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  73. Signes-Pastor AJ, Woodside JV, McMullan P, Mullan K, Carey M, Karagas MR, et al. Levels of infants’ urinary arsenic metabolites related to formula feeding and weaning with rice products exceeding the EU inorganic arsenic standard. PloS one. 2017;12:e0176923.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Karagas MR, Morris JS, Weiss JE, Spate V, Baskett C, Greenberg ER. Toenail samples as an indicator of drinking water arsenic exposure. Cancer Epidemiol Biomark Prev. 1996;5:849–52.

    CAS  Google Scholar 

  75. Peters SC, Blum JD, Klaue B, Karagas MR. Arsenic occurrence in New Hampshire drinking water. Environ Sci Technol 1999;33:1328–33.

    Article  CAS  ADS  Google Scholar 

  76. Cottingham KL, Karimi R, Gruber JF, Zens MS, Sayarath V, Folt CL, et al. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water. Nutr J. 2013;12:149.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Reynard B, Balter V. Trace elements and their isotopes in bones and teeth: Diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr Palaeocl. 2014;416:4–16.

    Article  Google Scholar 

  78. Pomroy C, Charbonneau SM, McCullough RS, Tam GK. Human retention studies with 74As. Toxicol Appl Pharm. 1980;53:550–6.

    Article  CAS  Google Scholar 

  79. Hare D, Austin C, Doble P. Quantification strategies for elemental imaging of biological samples using laser ablation-inductively coupled plasma-mass spectrometry. Analyst. 2012;137:1527–37.

    Article  CAS  PubMed  ADS  Google Scholar 

  80. Theiner S, Egger A, Keppler B, Heffeter P, Kornauth C, Theiner S, et al. Bioimaging and quantification of metal-based anticancer drugs using LA-ICP-MS. J Biol Inorg Chem. 2014;19:S681–S.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the families, investigators, and study staff of DOMHaIN, SLBT and the NHBCS.

Funding

This work was supported by grants P01ES022832, P42ES007373, and from the National Institute of Environmental Health Sciences, grant P20GM104416 from the National Institute of General Medical Sciences (NIGMS), grant UG3/UH3OD023275 from the National Institutes of Health Office of the Director. JAB was supported by T32CA134286. MOC was supported by R01DE02815NIH. TP was supported by NIH 5UH3OD023275, NIGMS 1R24GM141194 & NSF 2042513. MGW and FBB were supported by R01ES031943, P42ES030990, and P30ES000002. Laser ablation elemental imaging was performed at the Dartmouth Biomedical National Elemental Imaging Resource (BNEIR) supported by NIGMS R24GM141194. The funders had no role in the study design, collection, analysis interpretation of the data, and writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

T. Punshon: Investigation, Data curation, Writing - Original Draft preparation, Writing – Review and Editing. J.A. Bauer: Formal Analysis, Writing – Original draft preparation, Writing – Review and Editing, Visualization. Margaret R. Karagas: Funding acquisition, Data curation, Supervision, Project Administration, Writing – Review and Editing. Modupe O. Coker: Funding acquisition, Data curation, Supervision, Project Administration, Writing – Review and Editing. Marc G. Weisskopf: Funding acquisition, Data curation, Supervision, Project Administration, Writing – Review and Editing. Joseph J. Mangano: Project Administration. Felicitas B. Bidlack: Methodology, Supervision, Writing – Review and Editing. Matthew N. Barr: Investigation. Brian P. Jackson: Conceptualization, Investigation, Writing – Review and Editing.

Corresponding author

Correspondence to T. Punshon.

Ethics declarations

Competing interests

The authors declare no competing interests.

ETHICAL APPROVAL

NHBCS: Participants received a detailed description of the study procedures before consenting to participate. Study materials and protocols for NHBCS were approved by the Committee for the Protection of Human Subjects at Dartmouth College. Data from the first analyzed NHBCS teeth (n = 154) are included in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punshon, T., Bauer, J.A., Karagas, M.R. et al. Quantified retrospective biomonitoring of fetal and infant elemental exposure using LA-ICP-MS analysis of deciduous dentin in three contrasting human cohorts. J Expo Sci Environ Epidemiol (2024). https://doi.org/10.1038/s41370-024-00652-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41370-024-00652-3

Keywords

Search

Quick links