Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Acid–base chemistry and the economic implication of electrocatalytic carboxylate production in alkaline electrolytes

Abstract

In recent years, electrocatalytic systems powered by renewable energy have gained prominence in regard to sustainable chemical production. A majority of published literature focuses on catalyst development in alkaline electrolytes, driven by advantages such as high ionic conductivity, low charge transfer resistance and rapid kinetics. Here we shed light on challenges arising from the use of alkaline electrolytes for product separation and electrolyte recovery. Delving into acid–base reaction chemistry, we identify the problematic synthesis of organic acids whereby the high-pH environment leads to dissociation or deprotonation, forming conjugate bases and water. Our analysis of an alkaline electrochemical process for glycerol oxidation highlights the significant economic hurdles, with >60% of capital costs, 70% of raw material (for example, potassium hydroside) costs and 64% of total energy costs attributed to downstream product separation. These challenges, related to acid–base reaction chemistry, are often overlooked at the catalyst development stage, resulting in a significant waste of research resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Review of publications covering electrochemical production of organic acids.
Fig. 2: Proton ladder diagram showing relative strength and conjugate bases of common acids.
Fig. 3: Schematic of electrochemical GA/FA production.
Fig. 4: Techno-economic analysis of the production of GA/FA.
Fig. 5: Sensitivity analysis illustrating the impact of changes in key parameters on levelized cost.

Similar content being viewed by others

Data availability

Data that support the findings of this study are provided with the manuscript and its Supplementary Information file. All data used in this study are available from the corresponding author on reasonable request.

References

  1. Climate Action. United Nations www.un.org/en/climatechange/net-zero-coalition

  2. Chemicals. International Energy Agency (IEA) www.iea.org/energy-system/industry/chemicals

  3. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    PubMed  Google Scholar 

  4. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    PubMed  Google Scholar 

  5. Khan, M. A. et al. Techno-economic analysis of a solar-powered biomass electrolysis pathway for coproduction of hydrogen and value-added chemicals. Sustain. Energy Fuels 4, 5568–5577 (2020).

    CAS  Google Scholar 

  6. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Google Scholar 

  7. Kim, H. J. et al. Coproducing value-added chemicals and hydrogen with electrocatalytic glycerol oxidation technology: experimental and techno-economic investigations. ACS Sustain. Chem. Eng. 5, 6626–6634 (2017).

    CAS  Google Scholar 

  8. Zhong, C. et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44, 7484–7539 (2015).

    CAS  PubMed  Google Scholar 

  9. Mahmood, N. et al. Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5, 1700464 (2018).

    Google Scholar 

  10. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    CAS  Google Scholar 

  11. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (John Wiley & Sons, 2017); https://doi.org/10.1002/3527602658.fmatter

  12. Li, T. & Harrington, D. A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. ChemSusChem 14, 1472–1495 (2021).

    CAS  PubMed  Google Scholar 

  13. Gomes, J. F., Martins, C. A., Giz, M. J., Tremiliosi-Filho, G. & Camara, G. A. Insights into the adsorption and electro-oxidation of glycerol: self-inhibition and concentration effects. J. Catal. 301, 154–161 (2013).

    CAS  Google Scholar 

  14. Wang, L. et al. Deactivation of palladium electrocatalysts for alcohols oxidation in basic electrolytes. Electrochim. Acta 177, 100–106 (2015).

    CAS  Google Scholar 

  15. Araujo, H. R. et al. How the adsorption of Sn on Pt (100) preferentially oriented nanoparticles affects the pathways of glycerol electro-oxidation. Electrochim. Acta 297, 61–69 (2019).

    CAS  Google Scholar 

  16. Lin, J. L., Ren, J., Tian, N., Zhou, Z. Y. & Sun, S. G. In situ FTIR spectroscopic studies of ethylene glycol electrooxidation on Pd electrode in alkaline solution: the effects of concentration. J. Electroanal. Chem. 688, 165–171 (2013).

    CAS  Google Scholar 

  17. Schnaidt, J. W. Electrooxidation of C2 and C3 Molecules Studied By Combined In Situ ATR-FTIRS and Online DEMS. PhD Dissertation (Ulm University, 2013); https://oparu.uni-ulm.de/xmlui/handle/123456789/2625

  18. Rafaïdeen, T., Baranton, S. & Coutanceau, C. Highly efficient and selective electrooxidation of glucose and xylose in alkaline medium at carbon supported alloyed PdAu nanocatalysts. Appl. Catal. B Environ. 243, 641–656 (2019).

    Google Scholar 

  19. Guo, J., Chen, R., Zhu, F. C., Sun, S. G. & Villullas, H. M. New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells. Appl. Catal. B Environ. 224, 602–611 (2018).

    CAS  Google Scholar 

  20. Li, J. et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat. Catal. 2, 1124–1131 (2019).

    CAS  Google Scholar 

  21. El-Nowihy, G. H., Mohammad, A. M., Sadek, M. A., Khalil, M. M. H. & El-Deab, M. S. EIS-activity correlation for the electro-oxidation of ethylene glycol at nanoparticles-based electrocatalysts. J. Electrochem. Soc. 166, F364–F376 (2019).

    CAS  Google Scholar 

  22. Spendelow, J. S., Goodpaster, J. D., Kenis, P. J. A. & Wieckowski, A. Mechanism of CO oxidation on Pt(111) in alkaline media. J. Phys. Chem. B 110, 9545–9555 (2006).

    CAS  PubMed  Google Scholar 

  23. Gómez-Marín, A. M. & Hernández-Ortiz, J. P. Langmuir–Hinshelwood mechanism including lateral interactions and species diffusion for CO electro-oxidation on metallic surfaces. J. Phys. Chem. C Nanometer. Interfaces 118, 2475–2486 (2014).

    Google Scholar 

  24. Thomas, F. & Fuller, J. N. H. Electrochemical Engineering (John Wiley & Sons, 2018).

  25. Lind, E. Influence of Mass Transport on Glycerol Electrooxidation on Palladium in Alkaline Media (KTH Royal Institute of Technology, 2022).

  26. Yang, Y. & Mu, T. Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chem. 23, 4228–4254 (2021).

    CAS  Google Scholar 

  27. Morgan, A., Kavanagh, R., Lin, W. F., Hardacre, C. & Hu, P. Electrooxidation of methanol in an alkaline fuel cell: determination of the nature of the initial adsorbate. Phys. Chem. Chem. Phys. 15, 20170–20175 (2013).

    CAS  PubMed  Google Scholar 

  28. Kwon, Y.; Lai, S. C.; Rodriguez, P.; Koper, M. T., Electrocatalytic oxidation of alcohols on gold in alkaline media: base or gold catalysis? J. Am. Chem. Soc. 133, 6914–6917 (2011).

  29. Beyhan, S., Uosaki, K., Feliu, J. M. & Herrero, E. Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline media. J. Electroanal. Chem. 707, 89–94 (2013).

    CAS  Google Scholar 

  30. Valter, M., Wickman, B. & Hellman, A. Solvent effects for methanol electrooxidation on gold. J. Phys. Chem. C Nanometer. Interfaces 125, 1355–1360 (2021).

    CAS  Google Scholar 

  31. Smith, M. B. Organic Chemistry: An Acid–Base Approach (CRC, 2022); https://doi.org/10.1201/9781003174929

  32. Lower, S. K. Introduction to Acid–Base Chemistry (Simon Fraser Univ., 1999); www.chem1.com/acad/pdf/c1xacid1.pdf

  33. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry (Oxford Univ. Press, 2012).

    Google Scholar 

  34. March, J. et al. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (McGraw-Hill, 1977).

  35. Na, J. et al. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat. Commun. 10, 5193 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Murcia Valderrama, M. A., van Putten, R. J. & Gruter, G. J. M. The potential of oxalic – and glycolic acid based polyesters (review). Towards CO2 as a feedstock (Carbon Capture and Utilization – CCU). Eur. Polym. J. 119, 445–468 (2019).

    CAS  Google Scholar 

  37. Zhou, X. et al. Glycolic acid production from ethylene glycol via sustainable biomass energy: integrated conceptual process design and comparative techno-economic–society–environment analysis. ACS Sustain. Chem. Eng. 9, 10948–10962 (2021).

    CAS  Google Scholar 

  38. Chen, Y. et al. Sustainable production of formic acid and acetic acid from biomass. Mol. Catal. 545, 113199 (2023).

    CAS  Google Scholar 

  39. Kaiser, D., Beckmann, L., Walter, J. & Bertau, M. Conversion of green methanol to methyl formate. Catalysts 11, 869 (2021).

    CAS  Google Scholar 

  40. Reksten, A. H., Thomassen, M. S., Møller-Holst, S. & Sundseth, K. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development. Int. J. Hydrog. Energy 47, 38106–38113 (2022).

    CAS  Google Scholar 

  41. The Future of Hydrogen (International Energy Agency, 2019); https://doi.org/10.1787/1e0514c4-en

  42. Ruth, M., Mayyas, A. & Mann, M. Manufacturing competitiveness analysis for PEM and alkaline water electrolysis systems (2017); www.nrel.gov/docs/fy19osti/70380.pdf

  43. Boukil, R. et al. Enhanced electrocatalytic activity and selectivity of glycerol oxidation triggered by nanoalloyed silver-gold nanocages directly grown on gas diffusion electrodes. J. Mater. Chem. A Mater. 8, 8848–8856 (2020).

    CAS  Google Scholar 

  44. Khan, M. A. et al. Zero-crossover electrochemical CO2 reduction to ethylene with co-production of valuable chemicals. Chem. Catal. 2, 2077–2095 (2022).

    CAS  Google Scholar 

  45. Yadegari, H. et al. Glycerol oxidation pairs with carbon monoxide reduction for low-voltage generation of C2 and C3 product streams. ACS Energy Lett. 6, 3538–3544 (2021)

  46. Pookpunt, S., Ongsakul, W. & Madhu, N. A comprehensive techno-economic analysis for optimally placed wind farms. Electr. Eng. 102, 2161–2179 (2020).

    Google Scholar 

  47. Sukor, N. R., Shamsuddin, A. H., Mahlia, T. M. I. & Isa, M. F. M. Techno-economic analysis of CO2 capture technologies in offshore natural gas field: Implications to carbon capture and storage in Malaysia. Processes 8, 350 (2020).

    CAS  Google Scholar 

  48. H2A: hydrogen analysis production models. NREL www.nrel.gov/hydrogen/h2a-production-models.html (2018).

  49. Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., Harrison, G. & Tzimas, E. Formic acid synthesis using CO2 as raw material: techno-economic and environmental evaluation and market potential. Int. J. Hydrog. Energy 41, 16444–16462 (2016).

    Google Scholar 

  50. Kim, D. & Han, J. Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide. Appl. Energy 264, 114711 (2020).

    CAS  Google Scholar 

  51. Potassium Sulfate Market. Allied Market Research www.alliedmarketresearch.com/potassium-sulfate-market-A49194 (2023).

  52. Potassium sulfate market set to achieve USD 10.8 billion revenue by 2031 with 4.9% CAGR – TMR study. GlobeNewsWire www.globenewswire.com/news-release/2023/05/29/2677921/0/en/Potassium-Sulfate-Market-Set-to-Achieve-USD-10-8-Billion-Revenue-by-2031-with-4-9-CAGR-TMR-Study.html (2023).

  53. Jain, R. M., Mody, K. H., Keshri, J. & Jha, B. Biological neutralization and biosorption of dyes of alkaline textile industry wastewater. Mar. Pollut. Bull. 84, 83–89 (2014).

    CAS  PubMed  Google Scholar 

  54. Knexevic, K., Saracevic, E., Krampe, J. & Kreuzinger, N. Comparison of ion removal from waste fermentation effluent by nanofiltration, electrodialysis and ion exchange for a subsequent sulfuric acid recovery. J. Environ. Chem. Eng. 10, 108423 (2022).

    Google Scholar 

  55. Kim, Y. et al. The role of ruthenium on carbon-supported PtRu catalysts for electrocatalytic glycerol oxidation under acidic conditions. ChemCatChem 9, 1683–1690 (2017).

    CAS  Google Scholar 

  56. de Gyves, J. et al. Enhanced performance of glycerol electro-oxidation in alkaline media using bimetallic Au–Cu NPs supported by MWCNTs and reducible metal oxides. Front. Chem. 11, 1–18 (2023).

    Google Scholar 

  57. Yuda, A., Ashok, A. & Kumar, A. A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction. Catal. Rev. Sci. Eng. 64, 126–228 (2022).

    CAS  Google Scholar 

  58. Thia, L. et al. Copper-modified gold nanoparticles as highly selective catalysts for glycerol electro-oxidation in alkaline solution. ChemCatChem 8, 3272–3278 (2016).

    CAS  Google Scholar 

  59. Al-Attas, T. et al. Bioinspired multimetal electrocatalyst for selective methane oxidation. Chem. Eng. J. 474, 145827 (2023).

    CAS  Google Scholar 

  60. Vo, T.-G., Ho, P.-Y. & Chiang, C.-Y. Operando mechanistic studies of selective oxidation of glycerol to dihydroxyacetone over amorphous cobalt oxide. Appl. Catal. B Environ. 300, 120723 (2022).

    CAS  Google Scholar 

  61. Moklis, M. H., Shuo, C., Boonyubol, S. & Cross, J. S. Electrochemical valorization of glycerol via electrocatalytic reduction into biofuels: a review. ChemSusChem 26, e202300990 (2023).

    Google Scholar 

  62. Zhu, P. & Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    CAS  Google Scholar 

  63. She, X., Wang, Y., Xu, H., Chi Edman Tsang, S. & Ping Lau, S. Challenges and opportunities in electrocatalytic CO2 reduction to chemicals and fuels. Angew. Chem. Int. Ed. Engl. 61, e202211396 (2022) .

  64. Chen, C., Li, Y. & Yang, P. Address the ‘alkalinity problem’ in CO2 electrolysis with catalyst design and translation. Joule 5, 737–742 (2021).

    Google Scholar 

  65. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 10–12 (2020).

    Google Scholar 

  66. Xie, Y. et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat. Catal. 5, 564–570 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

M.A.K. acknowledges funds received through Office of the Dean, Faculty of Engineering, University of Alberta in assistance with research-related expenditures. S.K.N. thanks Alberta Innovates and the Government of Alberta for their support through graduate scholarships.

Author information

Authors and Affiliations

Authors

Contributions

S.K.N. and M.A.K. conducted formal economic analysis. M.A.M.R. performed the literature review. S.K.N. and M.A.M.R. summarized the data and cowrote the first draft of the manuscript. K.K. helped with manuscript writing. S.K.N. and K.K. further revised the manuscript. M.R. and H.S.S. helped with literature review and manuscript editing. M.G.K. and M.A.K. reviewed and further edited the manuscript. M.A.K. conceptualized the work. M.G.K. and M.A.K. supervised all aspects of the work.

Corresponding authors

Correspondence to Md Golam Kibria or M. A. Khan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Miguel Modestino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–19, Note 1 and Figs. 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabil, S.K., Muzibur Raghuman, M.A., Kannimuthu, K. et al. Acid–base chemistry and the economic implication of electrocatalytic carboxylate production in alkaline electrolytes. Nat Catal 7, 330–337 (2024). https://doi.org/10.1038/s41929-024-01107-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-024-01107-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing