Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conformal mapping approach to broadband nonlinear optics on chip

Abstract

Integrated nonlinear optical devices play an important role in modern optical communications; however, conventional on-chip optical devices with homogeneous or periodic translation dimensions generally have limited bandwidth when applied to nonlinear optical applications. So far there lacks a general method to design compact nonlinear optical devices capable of operating over a broadband continuous frequency range. In this work we propose a general strategy based on transformation optics to design curved accelerating waveguides with spatially gradient curvatures, which can achieve broadband nonlinear frequency conversion on chip. Through rigorous analytical calculation, we show that increasing the acceleration (that is, the gradient in the waveguide curvature) broadens the output signal spectrum in the nonlinear process. In this experiment we use sum-frequency generation for infrared signal upconversion as an example and fabricated a variety of curved accelerating waveguides using thin-film lithium niobate on insulators. Efficient sum-frequency generation is observed over a broadband continuous spectrum. Our conformal mapping approach offers a platform for various nonlinear optical processes and works in any frequency range, including visible, infrared and terahertz bands. Apart from lithium niobate on insulators, our approach is also compatible with other nonlinear materials such as silicon, silicon nitride and chalcogenide glasses and so on.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the CAW for broadband SFG-ISU.
Fig. 2: Theoretical analysis of the SFG-ISU mechanism in CAWs.
Fig. 3: Experimental demonstration of enhanced SFG-ISU.
Fig. 4: Experimental demonstration of broadband SFG in CAWs with different accelerations.

Similar content being viewed by others

Data availability

The data that support the plots of this study are available. Any additional data are available from the corresponding author on reasonable request. Source Data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Smith, S. D. Lasers, nonlinear optics and optical computers. Nature 316, 319–324 (1985).

    Article  ADS  Google Scholar 

  2. Arumugam, M. Optical fiber communication—an overview. Pramana 57, 849–869 (2001).

    Article  ADS  Google Scholar 

  3. Encyclopedia of Modern Optics (eds Guenther, B. D. & Steel, D.) 69–77 (Elsevier, 2005).

  4. Boyd, R.W. in Nonlinear Optics 3rd edn, Ch. 7, 329–390 (Academic, 2008).

  5. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  CAS  Google Scholar 

  6. Talghader, J. J., Gawarikar, A. S. & Shea, R. P. Spectral selectivity in infrared thermal detection. Light: Sci. Appl. 1, e24 (2012).

    Article  ADS  Google Scholar 

  7. Prylepa, A. et al. Material characterisation with methods of nonlinear optics. J. Phys. D 51, 043001 (2018).

    Article  ADS  Google Scholar 

  8. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nat. Photon. 1, 319–330 (2007).

    Article  ADS  CAS  Google Scholar 

  9. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    Article  ADS  CAS  Google Scholar 

  10. Xomalis, A. et al. Detecting mid-infrared light by molecular frequency upconversion in dual-wavelength nanoantennas. Science 374, 1268–1271 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Kalashnikov, D. A., Paterova, A. V., Kulik, S. P. & Krivitsky, L. A. Infrared spectroscopy with visible light. Nat. Photon. 10, 98–101 (2016).

    Article  ADS  CAS  Google Scholar 

  12. De Bruyne, S., Speeckaert, M. M. & Delanghe, J. R. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab. Sci. 55, 1–20 (2018).

    Article  PubMed  Google Scholar 

  13. Huang, K., Fang, J., Yan, M., Wu, E. & Zeng, H. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun. 13, 1077 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ready JF. in Industrial Applications of Lasers 2nd edn, Ch. 23, 546–558 (Academic, 1997).

  15. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. He, M. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photon. 13, 359–364 (2019).

    Article  ADS  CAS  Google Scholar 

  17. Ishio, H., Minowa, J. & Nosu, K. Review and status of wavelength-division-multiplexing technology and its application. J. Lightwave Technol. 2, 448–463 (1984).

    Article  ADS  Google Scholar 

  18. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Singh, N. et al. Supercontinuum generation in varying dispersion and birefringent silicon waveguide. Opt. Express 27, 31698–31712 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Wei, J. et al. Supercontinuum generation assisted by wave trapping in dispersion-managed integrated silicon waveguides. Phys. Rev. Appl. 14, 054045 (2020).

    Article  ADS  CAS  Google Scholar 

  21. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  CAS  Google Scholar 

  22. Javid, U. A. et al. Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett. 127, 183601 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon.16, 95–108 (2022).

    Article  ADS  CAS  Google Scholar 

  24. Hu, Y, et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photon. 16, 679–685 (2022).

  25. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  26. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  27. McCall, M. W., Favaro, A., Kinsler, P. & Boardman, A. A spacetime cloak, or a history editor. J. Opt. 13, 024003 (2010).

    Article  ADS  Google Scholar 

  28. Horsley, S. A. R. Transformation optics, isotropic chiral media and non-Riemannian geometry. New J. Phys. 13, 053053 (2011).

    Article  ADS  Google Scholar 

  29. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nat. Photon. 1, 224–227 (2007).

    Article  ADS  CAS  Google Scholar 

  30. Li, J. & Pendry, J. B. Hiding under the carpet: a new strategy for cloaking. Phys. Rev. Lett. 101, 203901 (2008).

    Article  ADS  PubMed  Google Scholar 

  31. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nat. Photon. 3, 461–463 (2009).

    Article  ADS  CAS  Google Scholar 

  33. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nat. Mater. 8, 568–571 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Chen, H. et al. Ray-optics cloaking devices for large objects in incoherent natural light. Nat. Commun. 4, 2652 (2013).

    Article  ADS  PubMed  Google Scholar 

  35. Zheng, B. et al. 3D Visible-light invisibility cloak. Adv. Sci. 5, 1800056 (2018).

    Article  Google Scholar 

  36. Lai, Y. et al. Illusion optics: the optical transformation of an object into another object. Phys. Rev. Lett. 102, 253902 (2009).

    Article  ADS  PubMed  Google Scholar 

  37. Greenleaf, A., Kurylev, Y., Lassas, M. & Uhlmann, G. Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. Phys. Rev. Lett. 99, 183901 (2007).

    Article  ADS  PubMed  Google Scholar 

  38. Narimanov, E. E. & Kildishev, A. V. Optical black hole: broadband omnidirectional light absorber. Appl. Phys. Lett. 95, 041106 (2009).

    Article  ADS  Google Scholar 

  39. Genov, D. A., Zhang, S. & Zhang, X. Mimicking celestial mechanics in metamaterials. Nat. Phys. 5, 687–692 (2009).

    Article  CAS  Google Scholar 

  40. Smolyaninov, I. I. & Narimanov, E. E. Metric signature transitions in optical metamaterials. Phys. Rev. Lett. 105, 067402 (2010).

    Article  ADS  PubMed  Google Scholar 

  41. Cheng, Q., Cui, T. J., Jiang, W. X. & Cai, B. G. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 12, 063006 (2010).

    Article  ADS  Google Scholar 

  42. Sheng, C., Liu, H., Wang, Y., Zhu, S. N. & Genov, D. A. Trapping light by mimicking gravitational lensing. Nat. Photon. 7, 902–906 (2013).

    Article  ADS  CAS  Google Scholar 

  43. Danner, A. J., Tyc, T. & Leonhardt, U. Controlling birefringence in dielectrics. Nat. Photon. 5, 357–359 (2011).

    Article  ADS  CAS  Google Scholar 

  44. Xu, L. & Chen, H. Conformal transformation optics. Nat. Photon. 9, 15–23 (2015).

    Article  ADS  CAS  Google Scholar 

  45. Pendry, J. B., Luo, Y. & Zhao, R. Transforming the optical landscape. Science 348, 521–524 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Heiblum, M. & Harris, J. H. Analysis of curved optical-waveguides by conformal transformation. IEEE J. Quantum Electron. QE11, 75–83 (1975).

    Article  ADS  Google Scholar 

  47. Frateschi, N. C. & Levi, A. F. J. Resonant modes and laser spectrum of microdisk lasers. Appl. Phys. Lett. 66, 2932–2934 (1995).

    Article  ADS  CAS  Google Scholar 

  48. Lenz, G., Talanina, I. & de Sterke, C. M. Bloch oscillations in an array of curved optical waveguides. Phys. Rev. Lett. 83, 963–966 (1999).

    Article  ADS  CAS  Google Scholar 

  49. Luo, Y., Lei, D. Y., Maier, S. A. & Pendry, J. B. Broadband light harvesting nanostructures robust to edge bluntness. Phys. Rev. Lett. 108, 023901 (2012).

    Article  ADS  PubMed  Google Scholar 

  50. Wan, X., Shen, X., Luo, Y. & Cui, T. J. Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser Photon. Rev. 8, 757–765 (2014).

    Article  ADS  Google Scholar 

  51. Wang, X. et al. Self-focusing and the Talbot effect in conformal transformation optics. Phys. Rev. Lett. 119, 033902 (2017).

    Article  ADS  PubMed  Google Scholar 

  52. Zelmon, D. E., Small, D. L. & Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3322 (1997).

    Article  ADS  CAS  Google Scholar 

  53. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    Article  ADS  CAS  Google Scholar 

  54. Yuan, S. et al. Strongly enhanced second harmonic generation in a thin film lithium niobate heterostructure cavity. Phys. Rev. Lett. 127, 153901 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. COMSOL Multiphysics v.5.3 (COMSOL AB, 2017).

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 92150302 and 92163216 to H. L., 62288101 to S. Z. and 12174187 to C.S.) and the National Key R&D Program of China (grant no. 2023YFB2805700 to C.S.). This work was sponsored by the National Research Foundation Singapore Competitive Research Program (grant nos. NRF-CRP22-2019-0006 and NRF-CRP23-2019-0007 to Y. L.), and A*STAR AME Programmatic Funds (grant no. A18A7b0058 to Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

H.L. and Y.L. conceived the idea. Y.L. performed the theoretical derivation. C.H. conceived the calculation, analysed the data and designed the sample. Z.Y and Y.Z fabricated the sample. H.L. and Y.Z. designed the experiments. C.H., Y.Z., X.M. and Z.L. performed the experiments. C.H., Y.L. and H.L. wrote the manuscript. All authors discussed the results. H.L. and Y.L. supervised the study.

Corresponding authors

Correspondence to Yu Luo or Hui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Supplementary Video 1

The CMOS image for 11 CAWs.

Source data

Source Data Fig. 1

Source data of Fig. 1c,d.

Source Data Fig. 2

Source data of Fig. 2d.

Source Data Fig. 3

Source data of Fig. 3c.

Source Data Fig. 4

Source data of Fig. 4a–c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Luo, Y., Zhao, Y. et al. A conformal mapping approach to broadband nonlinear optics on chip. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01386-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01386-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing