Skip to main content
Log in

Silicon dioxide-protection boosting the peroxidase-like activity of Fe single-atom catalyst for combining chemo-photothermal therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon-based single-atom catalysts (SACs) have been widely studied in the field of biomedicine due to their excellent catalytic performance. However, carbon-based SACs usually aggregate during pyrolysis, which leads to the reduction of catalytic activity. Here, we describe a method to improve the monodispersion of SACs using silicon dioxide as a protective layer. The decoration of silicon dioxide serves as a buffer layer for individual nanoparticles, which is not destroyed during the pyrolysis process, ensuring the single-particle dispersion of the nanoparticles after etching. This approach increased the hydroxyl groups on the surface of Fe-SAC (Fe-SAC-SE) and improved its water solubility, resulting in a four times enhancement of the peroxidase (POD)-like activity of Fe-SAC-SE (58.4 U/mg) than that of non-protected SACs (13.9 U/mg). The SiO2-protection approach could also improve the catalytic activities of SACs with other metals such as Mn, Co, Ni, and Cu, indicating its generality for SACs preparation. Taking advantage of the high POD-like activity, photothermal properties, and large specific surface area of Fe-SAC-SE, we constructed a synergistic therapeutic system (Fe-SAC-SE@DOX@PEG) for combining the photothermal therapy, catalytic therapy, and chemotherapy. It was verified that the photothermal properties of Fe-SAC-SE@DOX@PEG could effectively improve its POD-like activity, exhibiting excellent tumor-killing performance at the cellular level. This work may provide a general approach to improve the performances of SACs for disease therapy and diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L.; Meng, Q. L.; Zheng, R. X.; Wang, L. Q.; Xing, W.; Cai, W. W.; Xiao, M. L. Microenvironment regulation of M-N-C single-atom catalysts towards oxygen reduction reaction. Nano Res. 2023, 16, 4468–4487.

    Article  ADS  CAS  Google Scholar 

  2. He, J. S.; Liu, P. Y.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: Distinctive roles, unique fabrication methods and specific design strategies. J. Mater. Chem. 2022, 10, 6835–6871.

    Article  CAS  Google Scholar 

  3. Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202213318.

    Article  CAS  Google Scholar 

  4. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    Article  CAS  Google Scholar 

  5. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    Article  CAS  Google Scholar 

  6. Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023, 617, 519–523.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    Article  CAS  Google Scholar 

  8. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of singleatom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    Article  CAS  Google Scholar 

  9. Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

    Article  CAS  Google Scholar 

  10. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Article  ADS  PubMed  Google Scholar 

  12. Peng, C.; Pang, R. Y.; Li, J.; Wang, E. K. Current advances on the single-atom nanozyme and its bioapplications. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202211724.

  13. Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-Atom catalysts. ACS Nano 2021, 15, 2005–2037.

    Article  CAS  PubMed  Google Scholar 

  14. Fan, H.; Zhang, R.; Fan, K.; Gao, L.; Yan, X. Exploring the specificity of nanozymes. ACS Nano 2024, 18, 2533–2540.

    Article  CAS  PubMed  Google Scholar 

  15. Chen, Y. J.; Jiang, B.; Hao, H. G.; Li, H. J.; Qiu, C. Y.; Liang, X.; Qu, Q. Y.; Zhang, Z. D.; Gao, R.; Duan, D. M. et al. Atomic-level regulation of cobalt single-atom nanozymes: Engineering high-efficiency catalase mimics. Angew. Chem., Int. Ed. 2023, 62, e202301879.

    Article  CAS  Google Scholar 

  16. Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature Zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

    Article  ADS  CAS  Google Scholar 

  17. Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

    Article  CAS  Google Scholar 

  18. Fu, X. L.; Zhao, X.; Lu, T. B.; Yuan, M. J.; Wang, M. Graphdiyne-based single-atom catalysts with different coordination environments. Angew. Chem., Int. Ed. 2023, 62, e202219242.

    Article  CAS  Google Scholar 

  19. Zhu, Y.; Gong, P.; Wang, J.; Cheng, J. J.; Wang, W. Y.; Cai, H. L.; Ao, R. J.; Huang, H. W.; Yu, M. L.; Lin, L. S. et al. Amplification of lipid peroxidation by regulating cell membrane unsaturation To enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2023, 62, e202218407.

    Article  CAS  Google Scholar 

  20. Mateen, M.; Cheong, W. C.; Zheng, C.; Talib, S. H.; Zhang, J.; Zhang, X. M.; Liu, S. J.; Chen, C.; Li, Y. D. Molybdenum atomic sites embedded 1D carbon nitride nanotubes as highly efficient bifunctional photocatalyst for tetracycline degradation and hydrogen evolution. Chem. Eng. J. 2023, 451, 138305.

    Article  CAS  Google Scholar 

  21. Liu, X. G.; Huang, D. L.; Lai, C.; Qin, L.; Liu, S. Y.; Zhang, M. M.; Fu, Y. K. Single cobalt atom anchored on carbon nitride with cobalt nitrogen/oxygen active sites for efficient Fenton-like catalysis. J. Colloid Interface Sci. 2022, 629, 417–427.

    Article  PubMed  Google Scholar 

  22. Fu, H. Y.; Wei, J. Q.; Chen, G. L.; Xu, M. K.; Liu, J. Y.; Zhang, J. H.; Li, K.; Xu, Q. Y.; Zou, Y. J.; Zhang, W. X. et al. Axial coordination tuning Fe single-atom catalysts for boosting H2O2 activation. Appl. Catal. B 2023, 321, 122012.

    Article  CAS  Google Scholar 

  23. Yang, X.; Xiang, J. H.; Su, W.; Guo, J. F.; Deng, J. J.; Tang, L. J.; Li, G. H.; Liang, Y. L.; Zheng, L.; He, M. L. et al. Modulating Pt nanozyme by using isolated cobalt atoms to enhance catalytic activity for alleviating osteoarthritis. Nano Today 2023, 49, 101809.

    Article  CAS  Google Scholar 

  24. Tang, Y.; Liu, Y. W.; Xia, Y. D.; Zhao, F. Q.; Zeng, B. Z. Simultaneous detection of ovarian cancer-concerned HE4 and CA125 markers based on Cu single-atom-triggered CdS QDs and Eu MOF@Isoluminol ECL. Anal. Chem. 2023, 95, 4795–4802.

    Article  CAS  PubMed  Google Scholar 

  25. Xia, P.; Wang, C. H.; He, Q.; Ye, Z. H.; Sirés, I. MOF-derived singleatom catalysts: The next frontier in advanced oxidation for water treatment. Chem. Eng. J. 2023, 452, 139446.

    Article  CAS  Google Scholar 

  26. Zou, Y. B.; Hu, J. H.; Li, B.; Lin, L.; Li, Y.; Liu, F. F.; Li, X. Y. Tailoring the coordination environment of cobalt in a single-atom catalyst through phosphorus doping for enhanced activation of peroxymonosulfate and thus efficient degradation of sulfadiazine. Appl. Catal. B 2022, 312, 121408.

    Article  CAS  Google Scholar 

  27. Luo, F.; Wagner, S.; Ju, W.; Primbs, M.; Li, S.; Wang, H.; Kramm, U. I.; Strasser, P. Kinetic diagnostics and synthetic design of platinum group metal-free electrocatalysts for the oxygen reduction reaction using reactivity maps and site utilization descriptors. J. Am. Chem. Soc. 2022, 144, 13487–13498.

    Article  CAS  PubMed  Google Scholar 

  28. Jiao, L.; Xu, W. Q.; Wu, Y.; Wang, H. J.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. On the road from single-atom materials to Highly sensitive electrochemical sensing and biosensing. Anal. Chem. 2023, 95, 433–443.

    Article  CAS  PubMed  Google Scholar 

  29. Ding, S. C.; Barr, J. A.; Lyu, Z. Y.; Zhang, F. Y.; Wang, M. Y.; Tieu, P.; Li, X.; Engelhard, M. H.; Feng, Z. X.; Beckman, S. P. et al. Effect of phosphorus modulation in Iron single-atom catalysts for peroxidase mimicking. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202209633.

  30. Zhao, Y. M.; Jiang, Y. H.; Mo, Y.; Zhai, Y. M.; Liu, J. J.; Strzelecki, A. C.; Guo, X. F.; Shan, C. S. Boosting electrochemical catalysis and nonenzymatic sensing toward glucose by single-atom Pt supported on Cu@CuO core-shell nanowires. Small 2023, 19, 2207240.

    Article  CAS  Google Scholar 

  31. Liu, L. Y.; Mao, C. L.; Fu, H. Y.; Qu, X. L.; Zheng, S. R. ZnO nanorod-immobilized Pt single-atoms as an ultrasensitive sensor for triethylamine detection. ACS Appl. Mater. Interfaces 2023, 15, 16654–16663.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, S. E.; Jiang, Y. X.; Liu, P. C.; Yi, Y.; Hou, D. Y.; Li, Y.; Liang, X.; Wang, Y. F.; Li, Z.; He, J. et al. Single-atom gadolinium nano-contrast agents with high stability for tumor T1 magnetic resonance imaging. ACS Nano 2023, 17, 8053–8063.

    Article  CAS  PubMed  Google Scholar 

  33. Wu, F.; Ma, J. H.; Wang, Y.; Xie, L. P.; Yan, X. J.; Shi, L. Q.; Li, Y. F.; Liu, Y. Single copper atom photocatalyst powers an integrated catalytic cascade for drug-resistant bacteria elimination. ACS Nano 2023, 17, 2980–2991.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang, Y. X.; Rong, H. T.; Wang, Y. F.; Liu, S. E.; Xu, P.; Luo, Z.; Guo, L. M.; Zhu, T.; Rong, H. P.; Wang, D. S. et al. Single-atom cobalt nanozymes promote spinal cord injury recovery by anti-oxidation and neuroprotection. Nano Res. 2023, 16, 9752–9759.

    Article  ADS  CAS  Google Scholar 

  35. Xing, Y.; Xiu, J. D.; Zhou, M. Y.; Xu, T. L.; Zhang, M. Q.; Li, H.; Li, X. Y.; Du, X.; Ma, T. Y.; Zhang, X. J. Copper single-atom jellyfish-like nanomotors for enhanced tumor penetration and nanocatalytic therapy. ACS Nano 2023, 17, 6789–6799.

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Q. Q.; Zhang, M.; Huang, H.; Dong, C. H.; Dai, X. Y.; Feng, G. Y.; Lin, L.; Sun, D. D.; Yang, D. Y.; Xie, L. et al. Single atom-doped nanosonosensitizers for mutually optimized sono/chemo-nanodynamic therapy of triple negative breast cancer. Adv. Sci. 2023, 10, 2206244.

    Article  CAS  Google Scholar 

  37. Jiao, L.; Zhang, R.; Wan, G.; Yang, W. J.; Wan, X.; Zhou, H.; Shui, J. L.; Yu, S. H.; Jiang, H. L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Han, A. J.; Wang, B. Q.; Kumar, A.; Qin, Y. J.; Jin, J.; Wang, X. H.; Yang, C.; Dong, B.; Jia, Y.; Liu, J. F. et al. Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods 2019, 3, 1800471.

    Article  Google Scholar 

  39. Jorgensen, W. L.; Duffy, E. M. Prediction of drug solubility from structure. Adv. Drug Delivery Rev. 2002, 54, 355–366.

    Article  CAS  Google Scholar 

  40. Khan, K. U.; Minhas, M. U.; Badshah, S. F.; Suhail, M.; Ahmad, A.; Ijaz, S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022, 291, 120301.

    Article  CAS  PubMed  Google Scholar 

  41. Kharissova, O. V.; Kharisov, B. I.; de Casas Ortiz, E. G. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 2013, 3, 24812–24852.

    Article  ADS  CAS  Google Scholar 

  42. Blanch, A. J.; Lenehan, C. E.; Quinton, J. S. Optimizing surfactant concentrations for dispersion of single-walled Carbon nanotubes in aqueous solution. J. Phys. Chem. B 2010, 114, 9805–9811.

    Article  CAS  PubMed  Google Scholar 

  43. Kim, H.; Min, K. J.; Bang, S.; Hwang, J. Y.; Kim, J. H.; Yoon, C. S.; Sun, Y. K. Long-lasting, reinforced electrical networking in a high-loading Li2S cathode for high-performance lithium-sulfur batteries. Carbon Energy 2023, 5, e308.

    Article  Google Scholar 

  44. Motaee, A.; Javadian, S.; Khosravian, M. Influence of adsorption energy in graphene production via surfactant-assisted exfoliation of graphite: A graphene-dispersant design. ACS Appl. Nano Mater. 2021, 4, 3545–3556.

    Article  CAS  Google Scholar 

  45. Rennhofer, H.; Zanghellini, B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: A review. Nanomaterials 2021, 11, 1469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, S. H.; Shang, L.; Li, L. L.; Yu, Y. J.; Chi, C. W.; Wang, K.; Zhang, J.; Shi, R.; Shen, H. Y.; Waterhouse, G. I. N. et al. Metal-organic-framework-derived mesoporous carbon nanospheres containing porphyrin-Like Metal centers for conformal phototherapy. Adv. Mater. 2016, 28, 8379–8387.

    Article  CAS  PubMed  Google Scholar 

  47. Fan, H. Z.; Li, Y. Y.; Liu, J. B.; Cai, R.; Gao, X. S.; Zhang, H.; Ji, Y. L.; Nie, G. J.; Wu, X. C. Plasmon-enhanced oxidase-like activity and cellular effect of Pd-coated gold nanorods. ACS Appl. Mater. Interfaces 2019, 11, 45416–45426.

    Article  CAS  PubMed  Google Scholar 

  48. Fan, H. Z.; Zheng, J. J.; Xie, J. Y.; Liu, J. W.; Gao, X. F.; Yan, X. Y.; Fan, K. L.; Gao, L. Z. Surface ligand engineering ruthenium nanozyme superior to horseradish peroxidase for enhanced immunoassay. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202300387.

  49. Fan, H. Z.; Fan, Y.; Du, W. N.; Cai, R.; Gao, X. S.; Liu, X. F.; Wang, H.; Wang, L.; Wu, X. C. Enhanced type I photoreaction of indocyanine green via electrostatic-force-driven aggregation. Nanoscale 2020, 12, 9517–9523.

    Article  CAS  PubMed  Google Scholar 

  50. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872030, 51631001, 51902023, 51702016, and 22175048) and Beijing Institute of Technology Research Fund Program for Young Scholars.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Yi, Hongpan Rong or Jiatao Zhang.

Electronic Supplementary Material

12274_2024_6495_MOESM1_ESM.pdf

Silicon dioxide-protection boosting the peroxidase-like activity of Fe single-atom catalyst for combining chemo-photothermal therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Yi, Y., Rong, H. et al. Silicon dioxide-protection boosting the peroxidase-like activity of Fe single-atom catalyst for combining chemo-photothermal therapy. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6495-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6495-7

Keywords

Navigation