Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glutamatergic neurons in ventral pallidum modulate heroin addiction via epithalamic innervation in rats

Abstract

Glutamatergic neurons in ventral pallidum (VPGlu) were recently reported to mediate motivational and emotional behavior, but its role in opioid addiction still remains to be elucidated. In this study we investigated the function of VPGlu in the context-dependent heroin taking and seeking behavior in male rats under the ABA renewal paradigm. By use of cell-type-specific fiber photometry, we showed that the calcium activity of VPGlu were inhibited during heroin self-administration and context-induced relapse, but activated after extinction in a new context. The drug seeking behavior was accompanied by the decreased calcium signal of VPGlu. Chemogenetic manipulation of VPGlu bidirectionally regulated heroin taking and seeking behavior. Anterograde tracing showed that the lateral habenula, one of the epithalamic structures, was the major output region of VPGlu, and its neuronal activity was consistent with VPGlu in different phases of heroin addiction and contributed to the motivation for heroin. VPGlu axon terminals in LHb exhibited dynamic activity in different phases of heroin addiction. Activation of VPGlu-LHb circuit reduced heroin seeking behavior during context-induced relapse. Furthermore, the balance of excitation/inhibition from VP to LHb was shifted to enhanced glutamate transmission after extinction of heroin seeking motivation. Overall, the present study demonstrated that the activity of VPGlu was involved in the regulation of heroin addiction and identified the VPGlu-LHb pathway as a potential intervention to reduce heroin seeking motivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Drug taking and seeking behavior in different phases of heroin addiction.
Fig. 2: Calcium activity of VP glutamatergic neurons during heroin self-administration.
Fig. 3: Calcium activity of VP glutamatergic neurons during extinction and context-induced relapse.
Fig. 4: Chemogenetic activation of VP glutamatergic neurons blocks heroin taking and seeking behavior.
Fig. 5: Chemogenetic inhibition of VP glutamatergic neurons increased heroin seeking motivation.
Fig. 6: Activity of neurons in LHb was involved in the regulation of heroin addiction.
Fig. 7: VPGlu regulated heroin addiction via direct innervation to LHb.
Fig. 8: Extinction of heroin seeking motivation changed the balance of VP glutamate/GABA transmission to LHb.

Similar content being viewed by others

References

  1. Crombag HS, Bossert JM, Koya E, Shaham Y. Review. Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci. 2008;363:3233–43.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14:687–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kupchik YM, Prasad AA. Ventral pallidum cellular and pathway specificity in drug seeking. Neurosci Biobehav Rev. 2021;131:373–86.

    Article  CAS  PubMed  Google Scholar 

  4. Richard JM, Ambroggi F, Janak PH, Fields HL. Ventral pallidum neurons encode incentive value and promote cue-elicited instrumental actions. Neuron. 2016;90:1165–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith KS, Berridge KC. The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J Neurosci. 2005;25:8637–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ottenheimer D, Richard JM, Janak PH. Ventral pallidum encodes relative reward value earlier and more robustly than nucleus accumbens. Nat Commun. 2018;9:4350.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Prasad AA, McNally GP. Ventral pallidum output pathways in context-induced reinstatement of alcohol seeking. J Neurosci. 2016;36:11716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prasad AA, Xie C, Chaichim C, Nguyen JH, McClusky HE, Killcross S, et al. Complementary roles for ventral pallidum cell types and their projections in relapse. J Neurosci. 2020;40:880–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pribiag H, Shin S, Wang EH, Sun F, Datta P, Okamoto A, et al. Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking. Neuron. 2021;109:2165–82.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Badiani A, Belin D, Epstein D, Calu D, Shaham Y. Opiate versus psychostimulant addiction: the differences do matter. Nat Rev Neurosci. 2011;12:685–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ettenberg A, Pettit HO, Bloom FE, Koob GF. Heroin and cocaine intravenous self-administration in rats: mediation by separate neural systems. Psychopharmacol (Berl). 1982;78:204–9.

    Article  CAS  Google Scholar 

  12. Galaj E, Han X, Shen H, Jordan CJ, He Y, Humburg B, et al. Dissecting the role of GABA neurons in the VTA versus SNr in opioid reward. J Neurosci. 2020;40:8853–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hubner CB, Koob GF. The ventral pallidum plays a role in mediating cocaine and heroin self-administration in the rat. Brain Res. 1990;508:20–9.

    Article  CAS  PubMed  Google Scholar 

  14. Rogers JL, Ghee S, See RE. The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience. 2008;151:579–88.

    Article  CAS  PubMed  Google Scholar 

  15. Hur EE, Zaborszky L. Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization study [corrected]. J Comp Neurol. 2005;483:351–73.

    Article  PubMed  Google Scholar 

  16. Faget L, Zell V, Souter E, McPherson A, Ressler R, Gutierrez-Reed N, et al. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat Commun. 2018;9:849.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu B, Cao Y, Wang J, Dong J. Excitatory transmission from ventral pallidum to lateral habenula mediates depression. World J Biol Psychiatry. 2020;21:627–33.

    Article  PubMed  Google Scholar 

  18. Stephenson-Jones M, Bravo-Rivera C, Ahrens S, Furlan A, Xiao X, Fernandes-Henriques C, et al. Opposing contributions of GABAergic and Glutamatergic ventral pallidal neurons to motivational behaviors. Neuron. 2020;105:921–933.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang F, Zhang J, Yuan Y, Chen M, Gao Z, Zhan S, et al. Salience processing by glutamatergic neurons in the ventral pallidum. Sci Bull (Beijing). 2020;65:389–401.

    Article  CAS  PubMed  Google Scholar 

  20. Levi LA, Inbar K, Nachshon N, Bernat N, Gatterer A, Inbar D, et al. Projection-specific potentiation of ventral pallidal glutamatergic outputs after abstinence from cocaine. J Neurosci. 2020;40:1276–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bossert JM, Liu SY, Lu L, Shaham Y. A role of ventral tegmental area glutamate in contextual cue-induced relapse to heroin seeking. J Neurosci. 2004;24:10726–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Crombag HS, Shaham Y. Renewal of drug seeking by contextual cues after prolonged extinction in rats. Behav Neurosci. 2002;116:169–73.

    Article  CAS  PubMed  Google Scholar 

  23. Cui Y, Yang Y, Ni Z, Dong Y, Cai G, Foncelle A, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature. 2018;554:323–7.

    Article  CAS  PubMed  Google Scholar 

  24. Proulx CD, Aronson S, Milivojevic D, Molina C, Loi A, Monk B, et al. A neural pathway controlling motivation to exert effort. Proc Natl Acad Sci USA. 2018;115:5792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meye FJ, Soiza-Reilly M, Smit T, Diana MA, Schwarz MK, Mameli M. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse. Nat Neurosci. 2016;19:1019–24.

    Article  CAS  PubMed  Google Scholar 

  26. Valentinova K, Tchenio A, Trusel M, Clerke JA, Lalive AL, Tzanoulinou S, et al. Morphine withdrawal recruits lateral habenula cytokine signaling to reduce synaptic excitation and sociability. Nat Neurosci. 2019;22:1053–6.

    Article  CAS  PubMed  Google Scholar 

  27. Aizawa H, Kobayashi M, Tanaka S, Fukai T, Okamoto H. Molecular characterization of the subnuclei in rat habenula. J Comp Neurol. 2012;520:4051–66.

    Article  CAS  PubMed  Google Scholar 

  28. Fattorini G, Verderio C, Melone M, Giovedì S, Benfenati F, Matteoli M, et al. VGLUT1 and VGAT are sorted to the same population of synaptic vesicles in subsets of cortical axon terminals. J Neurochem. 2009;110:1538–46.

    Article  CAS  PubMed  Google Scholar 

  29. Heinsbroek JA, Bobadilla AC, Dereschewitz E, Assali A, Chalhoub RM, Cowan CW, et al. Opposing regulation of cocaine seeking by glutamate and GABA neurons in the ventral pallidum. Cell Rep. 2020;30:2018–2027.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vitcheva V. Cocaine toxicity and hepatic oxidative stress. Curr Med Chem. 2012;19:5677–82.

    Article  CAS  PubMed  Google Scholar 

  31. Johnson SW, North RA. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci. 1992;12:483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Freeman KB, Konaklieva MI, Riley AL. Assessment of the contributions of Na+ channel inhibition and general peripheral action in cocaine-induced conditioned taste aversion. Pharmacol Biochem Behav. 2005;80:281–8.

    Article  CAS  PubMed  Google Scholar 

  33. Rogerio R, Takahashi RN. Anxiogenic properties of cocaine in the rat evaluated with the elevated plus-maze. Pharmacol Biochem Behav. 1992;43:631–3.

    Article  CAS  PubMed  Google Scholar 

  34. Jhou TC, Good CH, Rowley CS, Xu SP, Wang H, Burnham NW, et al. Cocaine drives aversive conditioning via delayed activation of dopamine-responsive habenular and midbrain pathways. J Neurosci. 2013;33:7501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zuo W, Chen L, Wang L, Ye JH. Cocaine facilitates glutamatergic transmission and activates lateral habenular neurons. Neuropharmacology. 2013;70:180–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li H, Eid M, Pullmann D, Chao YS, Thomas AA, Jhou TC. Entopeduncular nucleus projections to the lateral habenula contribute to cocaine avoidance. J Neurosci. 2021;41:298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature. 2012;491:212–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsumoto M, Hikosaka O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature. 2007;447:1111–5.

    Article  CAS  PubMed  Google Scholar 

  39. Mathis VP, Williams M, Fillinger C, Kenny PJ. Networks of habenula-projecting cortical neurons regulate cocaine seeking. Sci Adv. 2021;7:eabj2225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nair SG, Smirnov DS, Estabrook MM, Chisholm AD, Silva PR, Neumaier JF. Effect of chemogenetic inhibition of lateral habenula neuronal activity on cocaine- and food-seeking behaviors in the rat. Addict Biol. 2021;26:e12865.

    Article  CAS  PubMed  Google Scholar 

  41. Wulff AB, Tooley J, Marconi LJ, Creed MC. Ventral pallidal modulation of aversion processing. Brain Res. 2019;1713:62–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Major Project of the Science and Technology Innovation 2030 of China (2021ZD0203500, STI2030-Major Projects 2021ZD0202900); National Natural Science Foundation of China (82030112, 81773710, 82371533, 82301677); Science and Technology Commission of Shanghai Municipality (20ZR1468200); Natural Science Foundation of Shanghai (22ZR1449300); Program of Shanghai Academic/Technology Research Leader (22XD1402400) and Shenzhen-Hong Kong Institute of Brain Science—Shenzhen Fundamental Research Institutions (NYKFKT2019015).

Author information

Authors and Affiliations

Authors

Contributions

ZQL, RSC and JL conceived this study and design the experiment; RSC and JL conducted the experiments with the assistance of YJW and KN; RSC and JL analyzed the data and wrote the manuscript; ZQL and JGL revised the manuscript.

Corresponding authors

Correspondence to Jing-gen Liu or Zhi-qiang Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Rs., Liu, J., Wang, Yj. et al. Glutamatergic neurons in ventral pallidum modulate heroin addiction via epithalamic innervation in rats. Acta Pharmacol Sin 45, 945–958 (2024). https://doi.org/10.1038/s41401-024-01229-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-024-01229-4

Keywords

Search

Quick links