Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Imaging and sensing

Brighter organic scintillators by hot exciton manipulation

The fast response and efficiency of plastic scintillators are severely degraded by the preferential population of slow triplet excited states in luminescence centres, such as in dye molecules. This issue can be solved by hot exciton manipulation, which avoids population of the lowest triplet state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Singlet and triplet relaxation pathways in a plastic scintillator.

References

  1. Birks, J. B. The Theory and Practice of Scintillation Counting (Pergamon Press, 1964).

  2. Brooks, F. D. Nucl. Instr. Meth. 162, 477–505 (1979).

    Article  CAS  Google Scholar 

  3. Segal, M. et al. Phys. Rev. B 68, 075211 (2003).

    Article  ADS  Google Scholar 

  4. Hamel, M. (ed) Plastic Scintillators: Chemistry and Applications (Springer Nature, 2021).

  5. Li, V. A. et al. Nucl. Instr. Meth. A 942, 162334 (2019).

    Article  CAS  Google Scholar 

  6. Marchi, T. et al. Sci. Rep. 9, 9154 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gandini, M. et al. Nat. Nanotechnol. 15, 462–468 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wang, X. et al. Nat. Photon. 15, 187–192 (2021).

    Article  ADS  CAS  Google Scholar 

  9. Hajagos, T. J. et al. Adv. Mater. 30, 1706956 (2018).

    Article  Google Scholar 

  10. Orfano, M. Nat. Photon. 17, 672–678 (2023).

    Article  ADS  CAS  Google Scholar 

  11. Pan, Y. et al. Adv. Optical Mater. 2, 510–515 (2014).

    Article  ADS  CAS  Google Scholar 

  12. Du, X. et al. Nat. Photon. https://doi.org/10.1038/s41566-023-01358-y (2024).

    Article  Google Scholar 

  13. Yao, Q. et al. Adv. Mater. 35, 2304938 (2023).

    Article  CAS  Google Scholar 

  14. Nagirnyi, V. et al. Chem. Phys. Lett. 268, 280–284 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Nikl.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikl, M. Brighter organic scintillators by hot exciton manipulation. Nat. Photon. 18, 109–110 (2024). https://doi.org/10.1038/s41566-024-01378-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01378-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing