Skip to main content
Log in

Nitrogen-doped carbon dots as photocatalysts for organic synthesis: Effect of nitrogen content on catalytic activity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Regulating the doping of carbon dots (CDs) and the generation of reactive oxygen species (ROS) is essential to selectively control their application in photocatalytic organic reactions. This study successfully synthesized five newly developed nitrogen-doped carbon dots (CDs 1–5) with varying nitrogen content, which have the ability to generate ROS when exposed to light radiation, specifically superoxide anion radicals (\({{\rm{O}}_2}^{ - }\)) and singlet oxygen (1O2). The utilization of the aforementioned nitrogen-doped CDs as photocatalysts enables the realization of their potential in facilitating efficient photocatalytic organic conversion. Simultaneously, it was observed that the photocatalytic efficiency exhibited a gradual decrease when the nitrogen content in the CDs increased. In order to provide more evidence for this claim, we employed a set of five CDs in the context of photocatalytic dehalogenation of α-bromoacetophenone, photocatalytic oxidative coupling reaction of amines to imines, photooxidation reaction of sulfides to sulfoxides, and cross-dehydrogenation coupling (CDC) reaction, in which it was further observed that there was a steady decrease in the yields of photocatalytic organic reactions as the nitrogen content in CDs increased. Notably, CDs 1 exhibited the best photocatalytic efficiency, thereby reinforcing the hypothesis that a higher nitrogen content corresponds to a decreased catalytic efficiency. This study not only investigates the impact of the nitrogen content on the catalytic performance of CDs, but also offers valuable insights for the future utilization of CDs for photocatalytic organic reactions in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kang, Z. H.; Lee, S. T. Carbon dots: Advances in nanocarbon applications. Nanoscale 2019, 11, 19214–19224.

    Article  CAS  PubMed  Google Scholar 

  2. Arcudi, F.; Dordevic, L.; Prato, M. Design, synthesis, and functionalization strategies of tailored carbon nanodots. Acc. Chem. Res. 2019, 52, 2070–2079.

    Article  CAS  PubMed  Google Scholar 

  3. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  CAS  Google Scholar 

  4. Chen, Z. L.; Liu, Y.; Kang, Z. H. Diversity and tailorability of photoelectrochemical properties of carbon dots. Acc. Chem. Res. 2022, 55, 3110–3124.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, H. L.; Ai, L.; Song, H. Q.; Song, Z. Q.; Yong, X.; Qu, S. N.; Lu, S. Y. Innovations in the solid-state fluorescence of carbon dots: Strategies, optical manipulations, and applications. Adv. Funct. Mater. 2023, 33, 2303756.

    Article  CAS  Google Scholar 

  6. Ru, Y.; Waterhouse, G. I. N.; Lu, S. Y. Aggregation in carbon dots: Special Issue: Emerging Investigators. Aggregate 2022, 3, e296.

    Article  CAS  Google Scholar 

  7. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  CAS  PubMed  Google Scholar 

  8. Dordevic, L.; Arcudi, F.; Cacioppo, M.; Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 2022, 17, 112–130.

    Article  ADS  PubMed  Google Scholar 

  9. Gao, J.; Zhu, M. M.; Huang, H.; Liu, Y.; Kang, Z. H. Advances, challenges and promises of carbon dots. Inorg. Chem. Front. 2017, 4, 1963–1986.

    Article  CAS  Google Scholar 

  10. Li, F.; Li, Y. Y.; Yang, X.; Han, X. X.; Jiao, Y.; Wei, T. T.; Yang, D. Y.; Xu, H. P.; Nie, G. J. Highly fluorescent chiral N-S-doped carbon dots from cysteine: Affecting cellular energy metabolism. Angew. Chem., Int. Ed. 2018, 57, 2377–2382.

    Article  CAS  Google Scholar 

  11. Guo, L.; Ge, J. C.; Liu, W. M.; Niu, G. L.; Jia, Q. Y.; Wang, H.; Wang, P. F. Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale 2016, 8, 729–734.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  CAS  PubMed  Google Scholar 

  13. Ai, L.; Shi, R.; Yang, J.; Zhang, K.; Zhang, T. R.; Lu, S. Y. Efficient combination of g-C3N4 and CDs for enhanced photocatalytic performance: A review of synthesis, strategies, and applications. Small 2021, 17, 2007523.

    Article  CAS  Google Scholar 

  14. Shi, R.; Li, Z.; Yu, H. J.; Shang, L.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Zhang, T. R. Effect of nitrogen doping level on the performance of N-doped carbon quantum Dot/TiO2 composites for photocatalytic hydrogen evolution. ChemSusChem 2017, 10, 4650–4656.

    Article  CAS  PubMed  Google Scholar 

  15. Liu, D.; Chen, S. T.; Li, R. J.; Peng, T. Y. Review of Z-scheme heterojunctions for photocatalytic energy conversion. Acta Phys. Chim. Sin. 2020, 37, 2010017.

    Article  Google Scholar 

  16. Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L. H.; Song, L.; Alemany, L. B.; Zhan, X. B.; Gao, G. H. et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012, 12, 844–849.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

    Article  CAS  Google Scholar 

  18. Wang, Q.; Pang, E.; Tan, Q. X.; Zhao, S. J.; Yi, J. N.; Zeng, J.; Lan, M. H. Regulating photochemical properties of carbon dots for theranostic applications. WIREs Nanomed. Nanobi. 2023, 15, e1862.

    Article  CAS  Google Scholar 

  19. Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

    Article  CAS  PubMed  Google Scholar 

  20. Du, J. J.; Xu, N.; Fan, J. L.; Sun, W.; Peng, X. J. Carbon dots for in vivo bioimaging and theranostics. Small 2019, 15, 1805087.

    Article  Google Scholar 

  21. Zhao, H. X.; Liu, L. Q.; Liu, Z. D.; Wang, Y.; Zhao, X. J.; Huang, C. Z. Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem. Commun. 2011, 47, 2604–2606.

    Article  CAS  Google Scholar 

  22. Wei, W. L.; Xu, C.; Ren, J. S.; Xu, B. L.; Qu, X. G. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem. Commun. 2012, 48, 1284–1286.

    Article  CAS  Google Scholar 

  23. Walther, B. K.; Dinu, C. Z.; Guldi, D. M.; Sergeyev, V. G.; Creager, S. E.; Cooke, J. P.; Guiseppi-Elie, A. Nanobiosensing with graphene and carbon quantum dots: Recent advances. Mater. Today 2020, 39, 23–46.

    Article  CAS  Google Scholar 

  24. Dhenadhayalan, N.; Lin, K. C.; Saleh, T. A. Recent advances in functionalized carbon dots toward the design of efficient materials for sensing and catalysis applications. Small 2022, 16, 1905767.

    Article  Google Scholar 

  25. Sun, S.; Zhang, L.; Jiang, K.; Wu, A. G.; Lin, H. W. Toward high-efficient red emissive carbon dots: Facile preparation, unique properties, and applications as multifunctional theranostic agents. Chem. Mater. 2016, 28, 8659–8668.

    Article  CAS  Google Scholar 

  26. Pan, L. L.; Sun, S.; Zhang, L.; Jiang, K.; Lin, H. W. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 2016, 8, 17350–17356.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang, X. Y.; Zeng, Q. S.; Xiong, Y.; Ji, T. J.; Wang, C.; Shen, X. Y.; Lu, M.; Wang, H. R.; Wen, S. P.; Zhang, Y. et al. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1910530.

    Article  CAS  Google Scholar 

  28. Wang, Q. L.; Huang, X. X.; Long, Y. J.; Wang, X. L.; Zhang, H. J.; Zhu, R.; Liang, L. P.; Teng, P.; Zheng, H. Z. Hollow luminescent carbon dots for drug delivery. Carbon 2013, 59, 192–199.

    Article  CAS  Google Scholar 

  29. Ding, H.; Du, F. Y.; Liu, P. C.; Chen, Z. J.; Shen, J. C. DNA-carbon dots function as fluorescent vehicles for drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 6889–6897.

    Article  CAS  PubMed  Google Scholar 

  30. Yu, H. J.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Smart utilization of carbon dots in semiconductor photocatalysis. Adv. Mater. 2016, 28, 9454–9477.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, R.; Lu, K. Q.; Tang, Z. R.; Xu, Y. J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A 2017, 5, 3717–3734.

    Article  CAS  Google Scholar 

  32. Han, M.; Zhu, S. J.; Lu, S. Y.; Song, Y. B.; Feng, T. L.; Tao, S. Y.; Liu, J. J.; Yang, B. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications. Nano Today 2018, 19, 201–218.

    Article  CAS  Google Scholar 

  33. Rosso, C.; Filippini, G.; Prato, M. Carbon dots as nano-organocatalysts for synthetic applications. ACS Catal. 2020, 10, 8090–8105.

    Article  CAS  Google Scholar 

  34. Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075–10166.

    Article  CAS  PubMed  Google Scholar 

  35. Hou, W. D.; Guo, H. Z.; Wu, M. H.; Wang, L. Amide covalent bonding engineering in heterojunction for efficient solar-driven CO2 reduction. ACS Nano 2023, 17, 20560–20569.

    Article  CAS  PubMed  Google Scholar 

  36. Shen, X. Y.; Wang, Z. M.; Guo, H. Z.; Lei, Z. D.; Liu, Z.; Wang, L. Solvent engineering of oxygen-enriched carbon dots for efficient electrochemical hydrogen peroxide production. Small 2023, 19, 2303156.

    Article  CAS  Google Scholar 

  37. Hu, B. J.; Huang, K.; Tang, B. J.; Lei, Z. D.; Wang, Z. M.; Guo, H. Z.; Lian, C.; Liu, Z.; Wang, L. Graphene quantum dot-mediated atom-layer semiconductor electrocatalyst for hydrogen evolution. Nano-Micro Lett. 2023, 15, 217.

    Article  ADS  CAS  Google Scholar 

  38. Yoon, T. P.; Ischay, M. A.; Du, J. A. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem. 2010, 2, 527–532.

    Article  CAS  PubMed  Google Scholar 

  39. Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 2017, 46, 6111–6123.

    Article  CAS  PubMed  Google Scholar 

  40. Li, H. T.; Liu, R. H.; Lian, S. Y.; Liu, Y.; Huang, H.; Kang, Z. H. Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 2013, 5, 3289–3297.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Lei, T.; Wei, S. M.; Feng, K.; Chen, B.; Tung, C. H.; Wu, L. Z. Borylation of diazonium salts by highly emissive and crystalline carbon dots in water. ChemSusChem 2020, 13, 1715–1719.

    Article  CAS  PubMed  Google Scholar 

  42. Li, X. M.; Qiao, S. P.; Zhao, L. L.; Liu, S. D.; Li, F.; Yang, F. H.; Luo, Q.; Hou, C. X.; Xu, J. Y.; Liu, J. Q. Template-free construction of highly ordered monolayered fluorescent protein nanosheets: A bioinspired artificial light-harvesting system. ACS Nano 2019, 13, 1861–1869.

    CAS  PubMed  Google Scholar 

  43. He, T. T.; Wei, H. P.; Zhou, Y. B.; Jiang, L. Y.; Baell, J. B.; Yu, Y.; Huang, F. Visible light-induced borylation and arylation of small organic molecules using carbon dots. Org. Chem. Front. 2023, 10, 2918–2926.

    Article  CAS  Google Scholar 

  44. Li, F.; Yang, D. Y.; Xu, H. P. Non-metal-heteroatom-doped carbon dots: Synthesis and properties. Chem.—Eur. J. 2019, 25, 1165–1176.

    Article  CAS  PubMed  Google Scholar 

  45. Gentile, G.; Mamone, M.; Rosso, C.; Amato, F.; Lanfrit, C.; Filippini, G.; Prato, M. Tailoring the chemical structure of nitrogen-doped carbon dots for nano-aminocatalysis in aqueous media. ChemSusChem 2023, 16, e202202399.

    Article  CAS  PubMed  Google Scholar 

  46. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

    Article  CAS  Google Scholar 

  47. Liu, Q.; Li, Y. N.; Zhang, H. H.; Chen, B.; Tung, C. H.; Wu, L. Z. Reactivity and mechanistic insight into visible-light-induced aerobic cross-dehydrogenative coupling reaction by organophotocatalysts. Chem.—Eur. J. 2012, 18, 620–627.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X. Z.; Meng, Q. Y.; Zhong, J. J.; Gao, X. W.; Lei, T.; Zhao, L. M.; Li, Z. J.; Chen, B.; Tung, C. H.; Wu, L. Z. The singlet excited state of BODIPY promoted aerobic cross-dehydrogenative-coupling reactions under visible light. Chem. Commun. 2015, 51, 11256–11259.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (No. 52205210) and the Natural Science Foundation of Shandong Province (Nos. ZR2020MB018, ZR2022QE033, and ZR2021QB049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Liu or Ling-Bao Xing.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, KK., Ma, CQ., Dong, RZ. et al. Nitrogen-doped carbon dots as photocatalysts for organic synthesis: Effect of nitrogen content on catalytic activity. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6451-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6451-6

Keywords

Navigation